博碩士論文 110623022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.136.23.252
姓名 林東潤(Tung-Jun Lin)  查詢紙本館藏   畢業系所 太空科學與工程學系
論文名稱 以微型軟體定義無線電與樹莓派實現海事訊號與氣象觀測之空基資料蒐集
(Weather Data Reporting with Satellite Automatic-Identification-System: Concept and Prototyping)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-12-1以後開放)
摘要(中) 傳統的船舶自動識別系統(AIS)受到陸上設施的可視範圍限制,導致無法監控廣大的離岸海洋區域,此限制不利於在這些區域作業船舶的航海安全和氣象預報。為了解決這個問題,我們提出了一種利用低地球軌道(LEO)立方衛星的星載船舶自動識別系統(S-AIS)進行實時氣象報告的系統。我們的系統使用基於現場可程式化邏輯陣列(FPGA)的微型軟體定義無線電(MSDR)作為AIS收發機。船舶可以自動收集氣象資料並嵌入AIS訊息中,這些AIS信號會通過裝載S-AIS的立方衛星轉發到地面站,從而擴展AIS的覆?範圍並提供有價值的實時海上氣象資料,以提高海上安全和氣象預報的準確性。我們基於FPGA的S-AIS收發機具有高度的靈活性和性能,能夠有效地傳輸和接收嵌入氣象資料地AIS信號。這個多用途的技術可以在衛星上作為AIS中繼站,也可以在船舶上和地面站中作為AIS 收發機,從而進一步增強通信網路的連結與數據的收集。此外,我們還設計並分析了足以滿足任務需求的LEO衛星軌道,軌道設計選擇使用GRT軌道,在500公里高的衛星軌道與70度的FOV考量下,衛星可以提供半徑350公里的圓的資料收集面積,在10顆衛星的星系設計下可以提供約40分鐘的資料更新率。
摘要(英) Traditional Automatic Identification System (AIS) relies by terrestrial infrastructure, leaving vast ocean areas unmonitored. This limitation restricts maritime safety and weather forecasting for vessels operating in these regions. This study proposes a novel approach utilizing Satellite Automatic Identification System (S-AIS) onboard Low-Earth Orbit (LEO) CubeSats for real-time weather reporting. Our system uses Miniature Software-Defined Radios (MSDRs) built on Field-Programmable Gate Arrays (FPGAs) for efficient and customizable AIS transceivers. The flexibility of FPGA-based S-AIS transceivers facilitates rapid development and configuration of weather data reporting across the open water. Fishing vessels equipped with these MSDRs autonomously collect weather data and embed it within their AIS messages. S-AIS equipped CubeSats can then relay these enhanced AIS messages to ground stations, significantly extending the AIS coverage and providing real-time weather data for improved maritime safety and weather forecasting accuracy. This multipurpose technology functions as an AIS repeater on CubeSats and an AIS transceiver on vessels or ground stations, enhancing network connectivity and data acquisition. Additionally, the study explores the design and analysis of potential Repeating Ground Track (RGT) orbits for Low Earth Orbit (LEO) satellite to provide weather-reporting S-AIS service coverage area of a circle with a radius of 350 km with 70 degrees Field of View (FOV) at altitude of 500 km. For the 10-satellite constellation configuration, this constellation can provide data update frequency up to 40 minutes.
關鍵字(中) ★ 船舶自動識別系統
★ 天氣報告系統
★ 軟體定義無線電
★ 立方衛星
★ 衛星星座
關鍵字(英) ★ Automatic Identification System (AIS)
★ Weather Reporting System
★ Software-Defined Radio (SDR)
★ CubeSat
★ Satellite Constellation
論文目次 以微型軟體定義無線電與樹莓派實現海事訊號與氣象觀測之空基資料蒐集 i
Abstract ii
摘要 iii
致謝 iv
Content v
List of Figures vi
List of Tables ix
Notation Illustration x
Chapter 1: Introduction 1
1.1 Satellite Automatic Identification System Weather Reporting System 1
1.2 Miniature Software-Defined Radio 5
Chapter 2: Methodology 7
2.1 SDR Platform 7
2.2 AIS Signal Specification 11
2.3 MSDR AIS Transceiver 16
2.4 GMSK Modulator 17
2.5 GMSK Demodulator 24
2.6 GNU Radio 35
2.7 RTL-SDR and ShipPlotter 40
2.8 AIS Weather Reporting System 41
2.9 Satellite Orbit Design and Analysis 43
Chapter 3: Results 49
3.1 GMSK: MATLAB Simulation 49
3.2 GMSK Transmitter: Vivado Implementation 52
3.3 GMSK Receiver: Vivado Implementation 55
3.4 GNU Radio Reference Platform 60
3.5 RTL-SDR and ShipPlotter Verification 62
3.6 AIS Weather Reporting 64
3.7 Common Ground Track Satellite Constellation 69
Chapter 4: Conclusion and Future Work 78
Reference 82
Appendices 86
Appendix A Matched filter 86
參考文獻 [1] A. Harati-Mokhtari, A. Wall, P. Brooks and J. Wang, "Automatic Identification System (AIS): data reliability and human error implications," the Journal of Navigation, vol. 60, p. 373–389, 2007.
[2] M. Maritime and Port Bureau, "Taiwan Maritime Vessel Real-time Information System," Maritime and Port Bureau, MOTC, [Online]. Available: https://mpbais.motcmpb.gov.tw/. [Accessed 26 09 2023].
[3] M. A. Cervera and A. Ginesi, "On the performance analysis of a satellite-based AIS system," in 2008 10th International Workshop on Signal Processing for Space Communications, 2008.
[4] J. K. Tunaley, "Utility of various AIS messages for maritime awareness," contract, vol. 9, p. 7009458, 2013.
[5] G. Johnson, K. Dykstra, S. Ordell, B. Tetreault and K. Kohlmann, "Improving Meteorological Models Using Ships’ Weather Data Communicated via AIS," in Proceedings of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), 2021.
[6] B. Tetreault and G. W. Johnson, "Sharing ships’ weather data via AIS," TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, vol. 14, 2020.
[7] T. Ulversoy, "Software defined radio: Challenges and opportunities," IEEE Communications Surveys & Tutorials, vol. 12, p. 531–550, 2010.
[8] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang and G. M. Voelker, "Sora: high-performance software radio using general-purpose multi-core processors," Communications of the ACM, vol. 54, p. 99–107, 2011.
[9] M. Cummings and S. Haruyama, "FPGA in the software radio," IEEE communications Magazine, vol. 37, p. 108–112, 1999.
[10] J. Bhasker, A Vhdl primer, PTR Prentice Hall Englewood Cliffs, New Jersey, 2015.
[11] S. Palnitkar, Verilog HDL: a guide to digital design and synthesis, vol. 1, Prentice Hall Professional, 2003.
[12] XILINX, "Zynq-7000 SoC," XILINX, 2018.
[13] L. H. Crockett, R. A. Elliot, M. A. Enderwitz and R. W. Stewart, The Zynq book: embedded processing with the ARM Cortex-A9 on the Xilinx Zynq-7000 all programmable SoC, Strathclyde Academic Media, 2014.
[14] A. Devices, "AD9361 RF Agile Transceiver," Analog Devices, One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A., 2016.
[15] XILINX, "Zynq-7000 SoC: Embedded Design Tutorial," XILINX, 2019.
[16] AMD, "PYNQ - Python productivity for Zynq," AMD, 09 2016. [Online]. Available: http://www.pynq.io/. [Accessed 01 04 2022].
[17] Xilinx, "PYNQ," Xilinx, [Online]. Available: https://pynq.readthedocs.io/en/v2.4/index.html. [Accessed 01 04 2022].
[18] A. Devices, "AD9361 Reference Manual," Analog Devices, 2014.
[19] T. Feist, "Vivado design suite," White Paper, vol. 5, p. 30, 2012.
[20] Xilinx, "Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator," Xilinx, 2019.
[21] M. Series, "Technical characteristics for an automatic identification system using time-division multiple access in the VHF maritime mobile band," Recommendation ITU: Geneva, Switzerland, p. 1371–1375, 2014.
[22] A. Dembovskis, "AIS message extraction from overlapped AIS signals for SAT-AIS applications," 2015.
[23] R. E. Ziemer and W. H. Tranter, Principles of Communications, 7th Edition, John Wiley & Sons, Incorporated, 2014.
[24] K. Tsai and G. L. Lui, "Binary GMSK: Characteristics and performance," 1999.
[25] P. Burzigotti, A. Ginesi and G. Colavolpe, "Advanced receiver design for satellite-based AIS signal detection," in 2010 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop, 2010.
[26] Q. Hu, J. Cao, G. Gao, L. Xu and others, "Study of an evaluation model for AIS receiver sensitivity measurements," IEEE Transactions on instrumentation and measurement, vol. 69, p. 1118–1126, 2019.
[27] T. Saramaki, "4 Finite Impulse Response Filter," Handbook for digital signal processing, p. 155, 1993.
[28] The MathWorks Inc., MATLAB Version: 9.12.0.1884302 (R2022a), Natick, Massachusetts, United States: The MathWorks Inc., 2022.
[29] J. Vankka and K. A. I. Halonen, Direct digital synthesizers: theory, design and applications, vol. 614, Springer Science & Business Media, 2001.
[30] R. Andraka, "A survey of CORDIC algorithms for FPGA based computers," in Proceedings of the 1998 ACM/SIGDA sixth international symposium on Field programmable gate arrays, 1998.
[31] R. W. Schafer and L. R. Rabiner, "A digital signal processing approach to interpolation," Proceedings of the IEEE, vol. 61, p. 692–702, 1973.
[32] C. Jin, Y. Chen, G. Li, T. Zhang and T. Li, "Low Pass Filter for Anti-aliasing in Temporal Action Localization," arXiv preprint arXiv:2104.11403, 2021.
[33] K. C. Ho, Y. T. Chan and R. Inkol, "A digital quadrature demodulation system," IEEE Transactions on Aerospace and Electronic Systems, vol. 32, p. 1218–1227, 1996.
[34] G. Turin, "An introduction to matched filters," IRE transactions on Information theory, vol. 6, p. 311–329, 1960.
[35] I. Ali, N. Al-Dhahir and J. E. Hershey, "Doppler characterization for LEO satellites," IEEE transactions on communications, vol. 46, p. 309–313, 1998.
[36] E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons, 2010.
[37] H. J. Nussbaumer and H. J. Nussbaumer, The fast Fourier transform, Springer, 1982.
[38] D. Valerio, "Open source software-defined radio: A survey on gnuradio and its applications," Forschungszentrum Telekommunikation Wien, Vienna, Technical Report FTW-TR-2008-002, 2008.
[39] E. Blossom, "GNU radio: tools for exploring the radio frequency spectrum," Linux journal, vol. 2004, p. 4, 2004.
[40] E. R. "USRP X300 and X310 X Series," Ettus Research, 4600 Patrick Henry Dr., Santa Clara, CA 95054, United States of America, 2022.
[41] Nooelec, "NESDR SMArt v5 RTL-SDR Software Defined Radio," Nooelec.
[42] AIRSPY, "SDRsharp Quick Start Guide," AIRSPY, [Online]. Available: https://airspy.com/quickstart/. [Accessed 23 11 2023].
[43] ShipPlotter, "ShipPlotter," ShipPlotter, [Online]. Available: https://www.coaa.co.uk/shipplotter.htm. [Accessed 23 11 2023].
[44] Admin, "RTL-SDR TUTORIAL: CHEAP AIS SHIP TRACKING," RTL-SDR.COM, 29 04 2013. [Online]. Available: https://www.rtl-sdr.com/rtl-sdr-tutorial-cheap-ais-ship-tracking/. [Accessed 23 11 2023].
[45] M. Richardson and S. Wallace, Getting started with raspberry PI, " O′Reilly Media, Inc.", 2012.
[46] Raspberry Pi Foundation, "Build your own weather station," Raspberry Pi Foundation, 06 2017. [Online]. Available: https://projects.raspberrypi.org/en/projects/build-your-own-weather-station/0. [Accessed 22 03 2023].
[47] BOSCH, "Combined humidity and pressure sensor BME280," BOSCH, 2021.
[48] u-blox, "High precision GNSS module ZED-F9P-02B Data sheet," u-blox, 2023.
[49] STOTON, "High-precision GNSS Antenna TOP106," STOTON.
[50] NASA, "General Mission Analysis Tool (GMAT) Goals," NASA, [Online]. Available: https://opensource.gsfc.nasa.gov/projects/GMAT/index.php. [Accessed 19 02 2024].
[51] M. W. Lo, "Satellite-constellation design," Computing in science & engineering, vol. 1, p. 58–67, 1999.
[52] J. Hanson, M. Evans and R. Turner, "Designing good partial coverage satellite constellations," in Astrodynamics conference, 1990.
[53] H. W. Lee, S. Shimizu, S. Yoshikawa and K. Ho, "Satellite constellation pattern optimization for complex regional coverage," Journal of Spacecraft and Rockets, vol. 57, p. 1309–1327, 2020.
[54] D. A. Vallado, Fundamentals of astrodynamics and applications, vol. 12, Springer Science & Business Media, 2001.
[55] S. D. Vtipil and B. Newman, "Determining an Earth observation repeat ground track orbit for an optimization methodology," Journal of Spacecraft and Rockets, vol. 49, p. 157–164, 2012.
[56] Y. Ulybyshev, "Satellite constellation design for complex coverage," Journal of Spacecraft and Rockets, vol. 45, p. 843–849, 2008.
[57] J. R. Wertz, W. J. Larson, D. Kirkpatrick and D. Klungle, Space mission analysis and design, vol. 8, Springer, 1999.
[58] J. Shin, S.-Y. Park, J. Son, S.-C. Song and others, "Design of regional coverage low earth orbit (LEO) constellation with optimal inclination," Journal of Astronomy and Space Sciences, vol. 38, p. 217–227, 2021.
[59] C. Bruccoleri, Flower constellation optimization and implementation, Texas A&M University, 2007.
[60] E. Ortore, M. Cinelli and C. Circi, "A ground track-based approach to design satellite constellations," Aerospace Science and Technology, vol. 69, p. 458–464, 2017.
[61] X. Fu, M. Wu and Y. Tang, "Design and maintenance of low-Earth repeat-ground-track successive-coverage orbits," Journal of Guidance, Control, and Dynamics, vol. 35, p. 686–691, 2012.
[62] AISHub, "AIS Data Exchange," AISHub, 14 03 2012. [Online]. Available: https://www.aishub.net/ais-dispatcher. [Accessed 18 02 2022].
[63] Y. Ma, X. Wang, Z. Quan and H. V. Poor, "Data-driven measurement of receiver sensitivity in wireless communication systems," IEEE Transactions on Communications, vol. 67, p. 3665–3676, 2019.
[64] RIGOL, "RSA3000 Series Real-time Spectrum Analyzer," RIGOL, 2020.
[65] O. A. C. Coast Guard Administration, "Coast Guard Law Enforcement Responsibilities," Coast Guard Administration, Ocean Affairs Council, 16 05 2023. [Online]. Available: https://www.cga.gov.tw/GipOpen/wSite/ct?xItem=5138&ctNode=891&mp=999. [Accessed 16 05 2023].
[66] Central Weather Administration, "Central Weather Administration," Central Weather Administration, [Online]. Available: https://www.cwa.gov.tw/V8/C/W/OBS_Map.html. [Accessed 20 03 2024].
[67] A. Hassanin, F. Lazaro and S. Plass, "An advanced AIS receiver using a priori information," in OCEANS 2015-Genova, 2015.
[68] F. Clazzer, F. Lazaro Blasco and S. Plass, Enhanced AIS receiver design for satellite reception. CEAS Space J. 8 (4), 257–268 (2016).
[69] AZUR SPACE Solar Power GmbH, "Triple Junction Solar Cell 3G30C-Advanced," AZUR SPACE Solar Power GmbH, Heilbronn, 2016.
指導教授 林映岑 林映曾(Cissi Ying-Tsen Lin Cissi Ying-Tsen Lin) 審核日期 2025-3-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明