參考文獻 |
1. Keane, P., A. Kerr, and P. New, Crown gall of stone fruit II. Identification and nomenclature of Agrobacterium isolates. Australian Journal of Biological Sciences, 1970. 23(3): p. 585-596.
2. Flores-Felix, J.D., et al., History and current taxonomic status of genus Agrobacterium. Systematic and applied Microbiology, 2020. 43(1): p. 126046.
3. Weisberg, A.J., et al., Virulence and ecology of agrobacteria in the context of evolutionary genomics. Annual Review of Phytopathology, 2023. 61(1): p. 1-23.
4. Ramirez-Bahena, M.H., et al., Single acquisition of protelomerase gave rise to speciation of a large and diverse clade within the Agrobacterium/Rhizobium supercluster characterized by the presence of a linear chromid. Molecular phylogenetics and evolution, 2014. 73: p. 202-207.
5. Ormeno-Orrillo, E., et al., Taxonomy of rhizobia and agrobacteria from the Rhizobiaceae family in light of genomics. Systematic and applied microbiology, 2015. 38(4): p. 287-291.
6. Chou, L., et al., Species boundaries in the Agrobacterium tumefaciens complex and multi-level modular evolution of their antibacterial type VI secretion system and tumor-inducing plasmids. bioRxiv, 2021: p. 2021.05. 20.444927.
7. Mougel, C., et al., A mathematical method for determining genome divergence and species delineation using AFLP. International Journal of Systematic and Evolutionary Microbiology, 2002. 52(2): p. 573-586.
8. Portier, P., et al., Identification of genomic species in Agrobacterium biovar 1 by AFLP genomic markers. Applied and Environmental Microbiology, 2006. 72(11): p. 7123-7131.
9. Pu?awska, J. and M. Ka?u?na, Phylogenetic relationship and genetic diversity of Agrobacterium spp. isolated in Poland based on gyrB gene sequence analysis and RAPD. European Journal of Plant Pathology, 2012. 133: p. 379-390.
10. Lassalle, F., et al., Genomic species are ecological species as revealed by comparative genomics in Agrobacterium tumefaciens. Genome Biology and Evolution, 2011. 3: p. 762-781.
11. Allardet-Servent, A., et al., Presence of one linear and one circular chromosome in the Agrobacterium tumefaciens C58 genome. Journal of bacteriology, 1993. 175(24): p. 7869-7874.
12. Weisberg, A.J., et al., Unexpected conservation and global transmission of agrobacterial virulence plasmids. Science, 2020. 368(6495): p. eaba5256.
13. Conn, H., Validity of the genus Alcaligenes. Journal of bacteriology, 1942. 44(3): p. 353-360.
14. Smith, E.F. and C.O. Townsend, A plant-tumor of bacterial origin. Science, 1907. 25(643): p. 671-673.
15. Braun, A.C., Thermal studies on the factors responsible for tumor initiation in crown gall. American Journal of Botany, 1947: p. 234-240.
16. Braun, A.C., A physiological basis for autonomous growth of the crown-gall tumor cell. Proceedings of the National Academy of Sciences, 1958. 44(4): p. 344-349.
17. Zaenen, I., et al., Supercoiled circular DNA in crown-gall inducing Agrobacterium strains. Journal of molecular biology, 1974. 86(1): p. 109-127.
18. Chilton, M.-D., et al., Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell, 1977. 11(2): p. 263-271.
19. Thomashow, M., et al., Host range of Agrobacterium tumefaciens is determined by the Ti plasmid. Nature, 1980. 283(5749): p. 794-796.
20. Chilton, M.-D., et al., T-DNA from Agrobacterium Ti plasmid is in the nuclear DNA fraction of crown gall tumor cells. Proceedings of the National Academy of Sciences, 1980. 77(7): p. 4060-4064.
21. Willmitzer, L., et al., DNA from Ti plasmid present in nucleus and absent from plastids of crown gall plant cells. Nature, 1980. 287(5780): p. 359-361.
22. de la Riva, G.A., et al., Agrobacterium tumefaciens: a natural tool for plant transformation. Electronic journal of Biotechnology, 1998. 1(3): p. 24-25.
23. De Groot, M.J., et al., Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nature biotechnology, 1998. 16(9): p. 839-842.
24. Bundock, P., et al., Trans?kingdom T?DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. The EMBO journal, 1995. 14(13): p. 3206-3214.
25. Salmond, G.P., Secretion of extracellular virulence factors by plant pathogenic bacteria. Annual review of phytopathology, 1994. 32(1): p. 181-200.
26. Agrios, G., Chapter twelve-plant diseases caused by prokaryotes: bacteria and mollicutes. Plant pathology, 2005: p. 615-703.
27. Lacroix, B. and V. Citovsky, The roles of bacterial and host plant factors in Agrobacterium-mediated genetic transformation. The International journal of developmental biology, 2013. 57(6-8): p. 467.
28. Nester, E.W., Agrobacterium: nature’s genetic engineer. Frontiers in plant science, 2015. 5: p. 730.
29. Hwang, H.-H., M. Yu, and E.-M. Lai, Agrobacterium-mediated plant transformation: biology and applications. The arabidopsis book, 2017. 15.
30. Tomlinson, A.D. and C. Fuqua, Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Current opinion in microbiology, 2009. 12(6): p. 708-714.
31. Matthysse, A.G., Attachment of Agrobacterium to plant surfaces. Frontiers in plant science, 2014. 5: p. 85892.
32. Matthysse, A.G., et al., The effect of cellulose overproduction on binding and biofilm formation on roots by Agrobacterium tumefaciens. Molecular plant-microbe interactions, 2005. 18(9): p. 1002-1010.
33. Barnhart, D.M., et al., CelR, an ortholog of the diguanylate cyclase PleD of Caulobacter, regulates cellulose synthesis in Agrobacterium tumefaciens. Applied and environmental microbiology, 2013. 79(23): p. 7188-7202.
34. Douglas, C., W. Halperin, and E. Nester, Agrobacterium tumefaciens mutants affected in attachment to plant cells. Journal of bacteriology, 1982. 152(3): p. 1265-1275.
35. Xu, J., et al., Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Research in microbiology, 2012. 163(9-10): p. 674-684.
36. Stachel, S.E., et al., Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature, 1985. 318(6047): p. 624-629.
37. Stachel, S.E. and P.C. Zambryski, virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell, 1986. 46(3): p. 325-333.
38. Jin, S., et al., Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein: essential role in biological activity of VirG. Journal of Bacteriology, 1990. 172(9): p. 4945-4950.
39. Jin, S., et al., The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. Journal of bacteriology, 1990. 172(2): p. 525-530.
40. Das, A., et al., Promoters of Agrobacterium tumefaciens Ti-plasmid virulence genes. Nucleic acids research, 1986. 14(3): p. 1355-1364.
41. Shimoda, N., et al., Genetic evidence for an interaction between the VirA sensor protein and the ChvE sugar-binding protein of Agrobacterium. Journal of Biological Chemistry, 1993. 268(35): p. 26552-26558.
42. Hu, X., et al., Agrobacterium tumefaciens recognizes its host environment using ChvE to bind diverse plant sugars as virulence signals. Proceedings of the National Academy of Sciences, 2013. 110(2): p. 678-683.
43. Wu, C.-F., et al., Acid-induced type VI secretion system is regulated by ExoR-ChvG/ChvI signaling cascade in Agrobacterium tumefaciens. 2012.
44. Heckel, B.C., et al., Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression. Journal of bacteriology, 2014. 196(18): p. 3221-3233.
45. Mantis, N.J. and S.C. Winans, The Agrobacterium tumefaciens vir gene transcriptional activator virG is transcriptionally induced by acid pH and other stress stimuli. Journal of bacteriology, 1992. 174(4): p. 1189-1196.
46. Yadav, N.S., et al., Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proceedings of the National Academy of Sciences, 1982. 79(20): p. 6322-6326.
47. Stachel, S.E., B. Timmerman, and P. Zambryski, Generation of single-stranded T-DNA molecules during the initial stages of T-DNA transfer from Agrobacterium tumefaciens to plant cells. Nature, 1986. 322(6081): p. 706-712.
48. Yanofsky, M.F., et al., The virD operon of Agrobacterium tumefaciens encodes a site-specific endonuclease. Cell, 1986. 47(3): p. 471-477.
49. Wang, K., et al., Site-specific nick in the T-DNA border sequence as a result of Agrobacterium vir gene expression. Science, 1987. 235(4788): p. 587-591.
50. Young, C. and E.W. Nester, Association of the virD2 protein with the 5′end of T strands in Agrobacterium tumefaciens. Journal of Bacteriology, 1988. 170(8): p. 3367-3374.
51. Durrenberger, F., et al., Covalently bound VirD2 protein of Agrobacterium tumefaciens protects the T-DNA from exonucleolytic degradation. Proceedings of the National Academy of Sciences, 1989. 86(23): p. 9154-9158.
52. Guo, M., et al., Recruitment of conjugative DNA transfer substrate to Agrobacterium type IV secretion apparatus. Proceedings of the National Academy of Sciences, 2007. 104(50): p. 20019-20024.
53. Guo, M., et al., Agrobacterium VirD2-binding protein is involved in tumorigenesis and redundantly encoded in conjugative transfer gene clusters. Molecular plant-microbe interactions, 2007. 20(10): p. 1201-1212.
54. Alvarez-Martinez, C.E. and P.J. Christie, Biological diversity of prokaryotic type IV secretion systems. Microbiology and Molecular Biology Reviews, 2009. 73(4): p. 775-808.
55. Christie, P.J., N. Whitaker, and C. Gonzalez-Rivera, Mechanism and structure of the bacterial type IV secretion systems. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2014. 1843(8): p. 1578-1591.
56. Backert, S., R. Fronzes, and G. Waksman, VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends in microbiology, 2008. 16(9): p. 409-413.
57. Fronzes, R., P.J. Christie, and G. Waksman, The structural biology of type IV secretion systems. Nature Reviews Microbiology, 2009. 7(10): p. 703-714.
58. Lai, E.-M. and C.I. Kado, The T-pilus of Agrobacterium tumefaciens. Trends in microbiology, 2000. 8(8): p. 361-369.
59. Atmakuri, K., E. Cascales, and P.J. Christie, Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion. Molecular microbiology, 2004. 54(5): p. 1199-1211.
60. Cascales, E. and P.J. Christie, Definition of a bacterial type IV secretion pathway for a DNA substrate. Science, 2004. 304(5674): p. 1170-1173.
61. Baron, C., et al., VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1. Journal of bacteriology, 1997. 179(4): p. 1203-1210.
62. Vergunst, A.C., et al., VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science, 2000. 290(5493): p. 979-982.
63. Dumas, F., et al., An Agrobacterium VirE2 channel for transferred-DNA transport into plant cells. Proceedings of the national academy of sciences, 2001. 98(2): p. 485-490.
64. Li, X., et al., Agrobacterium-delivered VirE2 interacts with host nucleoporin CG1 to facilitate the nuclear import of VirE2-coated T complex. Proceedings of the National Academy of Sciences, 2020. 117(42): p. 26389-26397.
65. Vergunst, A.C., et al., Recognition of the Agrobacterium tumefaciens VirE2 translocation signal by the VirB/D4 transport system does not require VirE1. Plant physiology, 2003. 133(3): p. 978-988.
66. Deng, W., et al., VirE1 is a specific molecular chaperone for the exported single?stranded?DNA?binding protein VirE2 in Agrobacterium. Molecular microbiology, 1999. 31(6): p. 1795-1807.
67. Lacroix, B., et al., The VirE3 protein of Agrobacterium mimics a host cell function required for plant genetic transformation. The EMBO journal, 2005. 24(2): p. 428-437.
68. Li, X., et al., Agrobacterium VirE3 Uses its two tandem domains at the C-terminus to retain its companion VirE2 on the cytoplasmic side of the host plasma membrane. Frontiers in Plant Science, 2020. 11: p. 464.
69. Garcia-Rodriguez, F.M., B. Schrammeijer, and P.J. Hooykaas, The Agrobacterium VirE3 effector protein: a potential plant transcriptional activator. Nucleic acids research, 2006. 34(22): p. 6496-6504.
70. Niu, X., et al., The Agrobacterium tumefaciens virulence protein VirE3 is a transcriptional activator of the F?box gene VBF. The Plant Journal, 2015. 84(5): p. 914-924.
71. Tzfira, T., M. Vaidya, and V. Citovsky, Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature, 2004. 431(7004): p. 87-92.
72. Zaltsman, A., et al., Agrobacterium induces expression of a host F-box protein required for tumorigenicity. Cell host & microbe, 2010. 7(3): p. 197-209.
73. Magori, S. and V. Citovsky, Agrobacterium counteracts host-induced degradation of its effector F-box protein. Science signaling, 2011. 4(195): p. ra69-ra69.
74. Wang, Y., et al., The putative Agrobacterium transcriptional activator?like virulence protein VirD5 may target T?complex to prevent the degradation of coat proteins in the plant cell nucleus. New Phytologist, 2014. 203(4): p. 1266-1281.
75. Zhang, S., et al., F-Box gene D5RF is regulated by Agrobacterium virulence protein VirD5 and essential for Agrobacterium-mediated plant transformation. International journal of molecular sciences, 2020. 21(18): p. 6731.
76. Ballas, N. and V. Citovsky, Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proceedings of the National Academy of Sciences, 1997. 94(20): p. 10723-10728.
77. Wang, J., et al., Chromosomal mapping of T-DNA inserts in transgenic Petunia by in situ hybridization. Transgenic research, 1995. 4: p. 241-246.
78. Levy, A.A., T-DNA integration: Pol θ controls T-DNA integration. Nature plants, 2016. 2(11): p. 1-2.
79. Van Kregten, M., et al., T-DNA integration in plants results from polymerase-θ-mediated DNA repair. Nature plants, 2016. 2(11): p. 1-6.
80. Nishizawa?Yokoi, A., et al., Agrobacterium T?DNA integration in somatic cells does not require the activity of DNA polymerase θ. New Phytologist, 2021. 229(5): p. 2859-2872.
81. Lukaszczyk, M., B. Pradhan, and H. Remaut, The biosynthesis and structures of bacterial pili. Bacterial cell walls and membranes, 2019: p. 369-413.
82. Sauer, F.G., et al., Fiber assembly by the chaperone–usher pathway. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2004. 1694(1-3): p. 259-267.
83. Van Gerven, N., et al., The role of functional amyloids in bacterial virulence. Journal of molecular biology, 2018. 430(20): p. 3657-3684.
84. Xu, Q., et al., A distinct type of pilus from the human microbiome. Cell, 2016. 165(3): p. 690-703.
85. Berry, J.-L. and V. Pelicic, Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS microbiology reviews, 2015. 39(1): p. 134-154.
86. Craig, L., M.E. Pique, and J.A. Tainer, Type IV pilus structure and bacterial pathogenicity. Nature Reviews Microbiology, 2004. 2(5): p. 363-378.
87. Wolfgang, M., et al., PilT mutations lead to simultaneous defects in competence for natural transformation and twitching motility in piliated Neisseria gonorrhoeae. Molecular microbiology, 1998. 29(1): p. 321-330.
88. Merz, A.J., M. So, and M.P. Sheetz, Pilus retraction powers bacterial twitching motility. Nature, 2000. 407(6800): p. 98-102.
89. Skerker, J.M. and H.C. Berg, Direct observation of extension and retraction of type IV pili. Proceedings of the National Academy of Sciences, 2001. 98(12): p. 6901-6904.
90. Singh, P.K., et al., A component of innate immunity prevents bacterial biofilm development. Nature, 2002. 417(6888): p. 552-555.
91. Costa, T.R., et al., Structural and functional diversity of type IV secretion systems. Nature Reviews Microbiology, 2024. 22(3): p. 170-185.
92. Babic, A., et al., Direct visualization of horizontal gene transfer. Science, 2008. 319(5869): p. 1533-1536.
93. Shu, A.-C., et al., Evidence of DNA transfer through F-pilus channels during Escherichia coli conjugation. Langmuir, 2008. 24(13): p. 6796-6802.
94. Goldlust, K., et al., The F pilus serves as a conduit for the DNA during conjugation between physically distant bacteria. Proceedings of the National Academy of Sciences, 2023. 120(47): p. e2310842120.
95. Beltran, L., et al., The mating pilus of E. coli pED208 acts as a conduit for ssDNA during horizontal gene transfer. Mbio, 2024. 15(1): p. e02857-23.
96. Kado, C.I., The role of the T-pilus in horizontal gene transfer and tumorigenesis. Current opinion in microbiology, 2000. 3(6): p. 643-648.
97. Wu, H.-Y., C.-Y. Chen, and E.-M. Lai, Expression and functional characterization of the Agrobacterium VirB2 amino acid substitution variants in T-pilus biogenesis, virulence, and transient transformation efficiency. PLoS One, 2014. 9(6): p. e101142.
98. Eisenbrandt, R., et al., Conjugative pili of IncP plasmids, and the Ti plasmid T pilus are composed of cyclic subunits. Journal of Biological Chemistry, 1999. 274(32): p. 22548-22555.
99. Shirasu, K. and C.I. Kado, Membrane location of the Ti plasmid VirB proteins involved in the biosynthesis of a pilin-like conjugative structure on Agrobacterium tumefaciens. FEMS microbiology letters, 1993. 111(2-3): p. 287-293.
100. Jones, A.L., et al., VirB2 is a processed pilin-like protein encoded by the Agrobacterium tumefaciens Ti plasmid. Journal of bacteriology, 1996. 178(19): p. 5706-5711.
101. Lai, E.-M. and C.I. Kado, Processed VirB2 is the major subunit of the promiscuous pilus of Agrobacterium tumefaciens. Journal of bacteriology, 1998. 180(10): p. 2711-2717.
102. Lai, E.-M., et al., Genetic and environmental factors affecting T-pilin export and T-pilus biogenesis in relation to flagellation of Agrobacterium tumefaciens. Journal of bacteriology, 2000. 182(13): p. 3705-3716.
103. Aly, K.A. and C. Baron, The VirB5 protein localizes to the T-pilus tips in Agrobacterium tumefaciens. Microbiology, 2007. 153(11): p. 3766-3775.
104. Lacroix, B. and V. Citovsky, Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant. PLoS One, 2011. 6(10): p. e25578.
105. Kreida, S., et al., Cryo-EM structure of the Agrobacterium tumefaciens type IV secretion system-associated T-pilus reveals stoichiometric protein-phospholipid assembly. bioRxiv, 2022: p. 2022.09. 25.509369.
106. Amro, J., et al., Cryo-EM structure of the Agrobacterium tumefaciens T-pilus reveals the importance of positive charges in the lumen. Structure, 2023. 31(4): p. 375-384. e4.
107. Banta, L.M., et al., An Agrobacterium VirB10 mutation conferring a type IV secretion system gating defect. Journal of bacteriology, 2011. 193(10): p. 2566-2574.
108. Garza, I. and P.J. Christie, A putative transmembrane leucine zipper of agrobacterium VirB10 is essential for t-pilus biogenesis but not type IV secretion. Journal of bacteriology, 2013. 195(13): p. 3022-3034.
109. Jakubowski, S.J., et al., Agrobacterium tumefaciens VirB9, an outer-membrane-associated component of a type IV secretion system, regulates substrate selection and T-pilus biogenesis. Journal of bacteriology, 2005. 187(10): p. 3486-3495.
110. Jakubowski, S.J., et al., Agrobacterium VirB10 domain requirements for type IV secretion and T pilus biogenesis. Molecular microbiology, 2009. 71(3): p. 779-794.
111. Sagulenko, E., et al., Role of Agrobacterium VirB11 ATPase in T-pilus assembly and substrate selection. Journal of bacteriology, 2001. 183(20): p. 5813-5825.
112. Hwang, H.-H. and S.B. Gelvin, Plant proteins that interact with VirB2, the Agrobacterium tumefaciens pilin protein, mediate plant transformation. The Plant Cell, 2004. 16(11): p. 3148-3167.
113. Huang, F.-C., et al., Arabidopsis RETICULON-LIKE3 (RTNLB3) and RTNLB8 participate in Agrobacterium-mediated plant transformation. International journal of molecular sciences, 2018. 19(2): p. 638.
114. Huang, F.-C. and H.-H. Hwang, Arabidopsis RETICULON-LIKE4 (RTNLB4) protein participates in Agrobacterium infection and VirB2 peptide-induced plant defense response. International journal of molecular sciences, 2020. 21(5): p. 1722.
115. Huang, F.-C., et al., Arabidopsis RAB8A, RAB8B and RAB8D proteins interact with several RTNLB proteins and are involved in the Agrobacterium tumefaciens infection process. Plant and Cell Physiology, 2021. 62(10): p. 1572-1588.
116. Dodds, P.N. and J.P. Rathjen, Plant immunity: towards an integrated view of plant–pathogen interactions. Nature Reviews Genetics, 2010. 11(8): p. 539-548.
117. Henry, E., K.A. Yadeta, and G. Coaker, Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity. New phytologist, 2013. 199(4): p. 908-915.
118. Segonzac, C. and C. Zipfel, Activation of plant pattern-recognition receptors by bacteria. Current opinion in microbiology, 2011. 14(1): p. 54-61.
119. Felix, G., et al., Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. The Plant Journal, 1999. 18(3): p. 265-276.
120. Zipfel, C., et al., Bacterial disease resistance in Arabidopsis through flagellin perception. Nature, 2004. 428(6984): p. 764-767.
121. Kunze, G., et al., The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. The Plant Cell, 2004. 16(12): p. 3496-3507.
122. Zipfel, C., et al., Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell, 2006. 125(4): p. 749-760.
123. Zipfel, C., Pattern-recognition receptors in plant innate immunity. Current opinion in immunology, 2008. 20(1): p. 10-16.
124. Erbs, G., et al., Peptidoglycan and muropeptides from pathogens Agrobacterium and Xanthomonas elicit plant innate immunity: structure and activity. Chemistry & biology, 2008. 15(5): p. 438-448.
125. Wu, H.-Y., et al., AGROBEST: an efficient Agrobacterium-mediated transient expression method for versatile gene function analyses in Arabidopsis seedlings. Plant methods, 2014. 10: p. 1-16.
126. Jones, J.D. and J.L. Dangl, The plant immune system. nature, 2006. 444(7117): p. 323-329.
127. Elmore, J.M., Z.-J.D. Lin, and G. Coaker, Plant NB-LRR signaling: upstreams and downstreams. Current opinion in plant biology, 2011. 14(4): p. 365-371.
128. Grant, M.R., et al., Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 1995. 269(5225): p. 843-846.
129. Mackey, D., et al., RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell, 2002. 108(6): p. 743-754.
130. Kado, C. and M. Heskett, Selective media for isolation of agrobacterium, Corynebacterium, Erwinia, Pseudomonas and Xanthomonas. Phytopathology, 1970. 60(6): p. 969-976.
131. Quandt, J. and M.F. Hynes, Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria. Gene, 1993. 127(1): p. 15-21.
132. Kim, K.-W., et al., β-Glucuronidase as reporter gene: Advantages and limitations. Arabidopsis protocols, 2006: p. 263-273.
133. Clough, S.J. and A.F. Bent, Floral dip: a simplified method for Agrobacterium?mediated transformation of Arabidopsis thaliana. The plant journal, 1998. 16(6): p. 735-743.
134. Wang, Y.-C., et al., Stable pH suppresses defense signaling and is the key to enhance Agrobacterium-mediated transient expression in Arabidopsis seedlings. Scientific reports, 2018. 8(1): p. 17071.
135. Jumper, J., et al., Highly accurate protein structure prediction with AlphaFold. nature, 2021. 596(7873): p. 583-589.
136. HWANG, H.H., et al., Agrobacterium?produced and exogenous cytokinin?modulated Agrobacterium?mediated plant transformation. Molecular plant pathology, 2010. 11(5): p. 677-690.
137. Jin, K., et al., Comparative Transcriptome Analysis of Agrobacterium tumefaciens Reveals the Molecular Basis for the Recalcitrant Genetic Transformation of Camellia sinensis L. Biomolecules, 2022. 12(5): p. 688.
138. Cameron, T.A., et al., Peptidoglycan synthesis machinery in Agrobacterium tumefaciens during unipolar growth and cell division. MBio, 2014. 5(3): p. 10.1128/mbio. 01219-14.
139. Hamilton, R. and M. Fall, The loss of tumor-initiating ability in Agrobacterium tumefaciens by incubation at high temperature. 1971.
140. Narasimhulu, S.B., et al., Early transcription of Agrobacterium T-DNA genes in tobacco and maize. The Plant Cell, 1996. 8(5): p. 873-886. |