博碩士論文 111821010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:3.145.90.123
姓名 林煌彬(Huang-Bin Lin)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 MyoG 的活化在癌症惡病質中的分歧角色
(The intriguing role of MyoG activation in cancer cachexia)
相關論文
★ Thirst control of water-seeking behavior in Drosophila★ KLHL17在癲癇與自閉症中之角色
★ MyoD對於PGC-1α 基因表現之調控機制★ 雄性素受體對於肌肉前驅細胞決定的功用
★ Nanog和Oct4表現對肌肉分化之影響★ 大量表現幹細胞專有轉錄因子抑制肌肉細胞走向分化
★ FOXOs 轉錄調控因子家族對肌肉細胞末期分化的影響★ 大量表現 Oct4 與 Nanog 抑制肌纖維母細胞 C2C12 分化
★ 在終極肌肉分化時,肌肉性bHLH轉錄因子對PGC-1α的調控★ FoxOs 大量表現對肌肉細胞末期分化的影響
★ 觀察肌肉生成轉錄因子如何調控 M- 和N- cadherin 表現★ Oc4和Nanog共同抑制末端肌肉分化
★ FoxO6在肌原母細胞中的代謝及分化中所扮演的角色★ PGC-1α 與 Stra13 間之交互作用
★ 探討大量表現 FoxO6 對肌肉終極分化的影響以及尋找 FoxO6 蛋白質在 PGC-1 alpha 啟動子上的結合位★ 探討丙戊酸 (Valporic acid) 於肌肉細胞中活化 Oct4 promoter 的機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-9-30以後開放)
摘要(中) 癌症惡病質是一種代謝綜合症,其特徵是在癌症患者身上會出現嚴重的骨骼肌 (SKM) 萎縮和脂肪組織消耗。雖然在大多數惡病質的體外實驗中,肌生成調節因子(MRF,其中包括 Myf5、MyoD、MyoG 和 MRF4) 的表達均受到抑制,但在一些研究發現部分患者的惡病質骨骼肌中 MyoG 的表達卻有所增加。我們的初步研究發現,只有在具有嚴重惡病質的 C26 小鼠 (帶有 C26 細胞腫瘤的小鼠) 中 MyoG 表達量顯著增加,而在其他惡病質進展緩慢或輕微的小鼠中並未觀察到此現象,這表明 MyoG 的活化可能僅與嚴重惡病質相關。我們發現,C26 細胞條件培養基 (C26M) 或 RAW264.7 前巨噬細胞條件培養基 (RAWM) 均會抑制肌生成並誘導肌管萎縮,而這種萎縮在 MyoG 過度表達的情況下更加嚴重。有趣的是,MyoG 過度表達卻能逆轉 C26M 所引起的肌生成抑制,這表明 MyoG 在癌症惡病質的發展中扮演了不同的角色。接下來我們克隆了來自不同程度惡病質小鼠的 MyoG 啟動子,並發現了微小的序列差異,此外C26M 抑制了這些啟動子的基礎活性及其被活化的能力,然而來自嚴重惡病質小鼠的 MyoG 啟動子的基礎活性高於其他啟動子。我們還發現 C26M 抑制了 MyoD 對肌生成基因啟動子的轉錄活性,這並非由於 MyoD 蛋白或 mRNA 穩定性的下降所致。綜合來看,我們的研究結果表明,MyoG 的活化僅出現在嚴重惡病質的個體中,並且它在惡病質期間的肌生成抑制和肌肉萎縮中扮演了不同的角色。
摘要(英) Cancer cachexia is a metabolic syndrome characterized by serious skeletal muscle (SKM) and adipose tissues wasting in cancer patients. The expression of myogenic regulatory factors (MRF, including Myf5, MyoD, MyoG, and MRF4) is repressed in most cachexia assay in vitro, but some studies found the expression of MyoG expression was increased in the cachexia SKM of some patients. Our preliminary study found increased MyoG level only in C26 mice (mice carrying C26 cell tumor) with aggressive cachexia but not in others with slow/mild cachexia, suggesting that MyoG activation is associated only with aggressive cachexia. We found that the medium conditioned by either C26 cells (C26M) or RAW264.7 pre-macrophage cells medium (RAWM) could repress myogenesis and induced myotube atrophy, which was aggravated by MyoG over-expression. Ironically, C26M repressed myogenesis was found to be rescued by MyoG over-expression, implying distinct roles of MyoG in the development of cachexia. The promoters of MyoG from mice with different degrees of cachexia were cloned and minor sequence variations were identified, and C26M all repressed their basal and activated activity. However, the basal activity of MyoG promoters from mice with aggressive cachexia was higher than that of other promoters. We also found that the transactivational activity of MyoD on myogenic gene promoters was repressed by C26M, which was not caused reduced MyoD protein and mRNA stability. Taken together, our results suggest that MyoG activation is only found in subjects with aggressive cachexia and it plays distinct roles in repressed myogenesis and atrophy during cachexia.
關鍵字(中) ★ 癌症惡病質
★ 肌肉生成
★ 肌肉萎縮
★ 肌肉生成素
關鍵字(英) ★ cancer cachexia
★ myogenesis
★ muscle atrophy
★ Myogenin
論文目次 目錄
中文摘要 I
英文摘要Abstract II
誌謝 III
目錄 IV
英文縮寫對照表 VIII
一、緒論 1
1-1 骨骼肌 1
1-2 肌肉生成(Myogenesis) 2
1-3 肌源性調節因子(Myogenic regulatory factors, MRFS) 3
1-4 肌肉生成素(MyoG) 6
1-5 癌症惡病質(Cancer cachexia) 7
1-6 癌症惡病質與MyoG的關係 10
1-7 研究動機與目的 10
二、 研究方法 12
2-1 實驗材料(Experiment material) 12
2-1-1 小鼠肌纖維母細胞:Mouse myoblast cells (C2C12) 12
2-1-2 小鼠纖維母細胞:Fibroblast cells (C3H/10T1/2) 12
2-1-3 穩定細胞株:C2C12-MyoG-luc 12
2-1-4 穩定細胞株:C2C12-tTA-MyoG #5 12
2-1-5 小鼠大腸直腸癌細胞:Mouse colon carcinoma (C26) 12
2-1-6 老鼠白血球的單核球巨噬細胞:Mouse leukaemic monocyte macrophage cell line (RAW 264.7 cells) 13
2-2 質體建構(Plasmid construction) 13
2-3 細胞轉染(Cell transfection) 14
2-3-1 細胞培養(Cell culture) 14
2-3-2 細胞轉染 14
2-3-3  冷光素?報導檢測(Luciferase reporter assay) 14
2-4 RNA萃取 14
2-5 反轉錄聚合?連鎖反應(Reverse-transcription pcr, RT-PCR) 15
2-6 及時定量聚合?連鎖反應(Quantitative real-time PCR, qRT-PCR) 15
2-7 細胞免疫螢光染色(Immunofluorescence, IF) 16
2-8 西方墨點法(Western blot) 16
2-8-1聚丙烯醯胺凝膠電泳(Sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 17
2-8-2蛋白質轉印(Transfer) 17
2-8-3 Blocking及抗體辨認 17
2-8-4蛋白質上的抗體剝離(Stripping) 18
2-9 gDNA萃取 18
2-10 挑Stable clone 18
2-11 條件培養基(Condition medium) 19
2-11-1小鼠大腸直腸癌細胞條件培養基(C26M) 19
2-11-2老鼠白血球的單核球巨噬細胞條件培養基(RawM) 19
2-12 RNA stability 19
三、研究結果 21
3-1 不同嚴重程度的癌症惡病質小鼠,其MyoG promoter在序列以及promoter活性上的不同 21
3-2 C26M抑制promoter的basal activity以及activated activity只出現在MyoG promoter 22
3-3 不同的癌症惡病質因子都會抑制MyoG promoter的活性 22
3-4 MyoG overexpression可以挽救C26M以及RAWM (RC)抑制肌肉生成(Myogenesis)的情形 23
3-5 MyoG overexpression會進一步加劇C26M以及RAWM (RM)誘導肌肉萎縮(Atrophy)的情形 24
3-6 C26M抑制MyoD的transactivation activity 25
3-7 C26M不會改變MyoD的RNA stability及蛋白質的表達 25
四、討論 27
4-1 不同嚴重程度的癌症惡病質小鼠,其MyoG promoter在序列以及promoter活性上的不同 27
4-2 不同的癌症惡病質因子對MyoG promoter的影響 28
4-3 在肌肉生成的過程中,MyoG overexpression對癌症惡病質發展的影響 28
4-4 在肌肉萎縮的過程中,MyoG overexpression對癌症惡病質發展的影響 30
4-5 在癌症惡病質狀態下,overexpress不同的MRFS對於肌源性基因的promoter的影響 30
4-6 結論與未來方向 31
五、圖表Figure 32
六、參考文獻 46
七、附錄 53
7-1 補充圖表 53
7-2 引子條目(Primer list) 69
7-3 溶劑及溶液配方 71
7-4 藥品試劑及抗體(Antibody) 74
參考文獻 1. Frontera, W.R. and J. Ochala, Skeletal muscle: a brief review of structure and function. Calcif Tissue Int, 2015. 96(3): p. 183-95.
2. Comai, G. and S. Tajbakhsh, Molecular and cellular regulation of skeletal myogenesis. Curr Top Dev Biol, 2014. 110: p. 1-73.
3. Aoyama, H. and K. Asamoto, Determination of somite cells: independence of cell differentiation and morphogenesis. Development, 1988. 104(1): p. 15-28.
4. Denetclaw, W.F., Jr., B. Christ, and C.P. Ordahl, Location and growth of epaxial myotome precursor cells. Development, 1997. 124(8): p. 1601-10.
5. Cheng, L., et al., The epaxial-hypaxial subdivision of the avian somite. Dev Biol, 2004. 274(2): p. 348-69.
6. Horsley, V., et al., IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell, 2003. 113(4): p. 483-94.
7. Buckingham, M. and P.W. Rigby, Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell, 2014. 28(3): p. 225-38.
8. Schultz, E., D.L. Jaryszak, and C.R. Valliere, Response of satellite cells to focal skeletal muscle injury. Muscle Nerve, 1985. 8(3): p. 217-22.
9. Buckingham, M., Skeletal muscle progenitor cells and the role of Pax genes. C R Biol, 2007. 330(6-7): p. 530-3.
10. Relaix, F., et al., Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol, 2006. 172(1): p. 91-102.
11. Relaix, F., et al., A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature, 2005. 435(7044): p. 948-53.
12. Crescenzi, M., et al., MyoD induces growth arrest independent of differentiation in normal and transformed cells. Proc Natl Acad Sci U S A, 1990. 87(21): p. 8442-6.
13. Halevy, O., et al., Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science, 1995. 267(5200): p. 1018-21.
14. Wilson, E.M. and P. Rotwein, Control of MyoD function during initiation of muscle differentiation by an autocrine signaling pathway activated by insulin-like growth factor-II. J Biol Chem, 2006. 281(40): p. 29962-71.
15. Charge, S.B. and M.A. Rudnicki, Cellular and molecular regulation of muscle regeneration. Physiol Rev, 2004. 84(1): p. 209-38.
16. Sabourin, L.A., et al., Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol, 1999. 144(4): p. 631-43.
17. Tajbakhsh, S., Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med, 2009. 266(4): p. 372-89.
18. Hollnagel, A., et al., The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol, 2002. 22(13): p. 4760-70.
19. Chen, S.L., et al., Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis. J Muscle Res Cell Motil, 2024. 45(1): p. 21-39.
20. Barndt, R.J. and Y. Zhuang, Controlling lymphopoiesis with a combinatorial E-protein code. Cold Spring Harb Symp Quant Biol, 1999. 64: p. 45-50.
21. Blackwell, T.K. and H. Weintraub, Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science, 1990. 250(4984): p. 1104-10.
22. Shirakawa, T., et al., Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells, 2022. 11(9).
23. Tapscott, S.J., The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development, 2005. 132(12): p. 2685-95.
24. Edmondson, D.G., T.J. Brennan, and E.N. Olson, Mitogenic repression of myogenin autoregulation. J Biol Chem, 1991. 266(32): p. 21343-6.
25. Sirri, V., M.P. Leibovitch, and S.A. Leibovitch, Muscle regulatory factor MRF4 activates differentiation in rhabdomyosarcoma RD cells through a positive-acting C-terminal protein domain. Oncogene, 2003. 22(36): p. 5658-66.
26. Zhang, W., R.R. Behringer, and E.N. Olson, Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev, 1995. 9(11): p. 1388-99.
27. Asfour, H.A., M.Z. Allouh, and R.S. Said, Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood), 2018. 243(2): p. 118-128.
28. Rudnicki, M.A., et al., Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell, 1992. 71(3): p. 383-90.
29. Braun, T., et al., Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell, 1992. 71(3): p. 369-82.
30. Rudnicki, M.A., et al., MyoD or Myf-5 is required for the formation of skeletal muscle. Cell, 1993. 75(7): p. 1351-9.
31. Hasty, P., et al., Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 1993. 364(6437): p. 501-6.
32. Nabeshima, Y., et al., Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature, 1993. 364(6437): p. 532-5.
33. Berkes, C.A., et al., Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol Cell, 2004. 14(4): p. 465-77.
34. Berghella, L., et al., A highly conserved molecular switch binds MSY-3 to regulate myogenin repression in postnatal muscle. Genes Dev, 2008. 22(15): p. 2125-38.
35. Oikawa, Y., et al., The methyl-CpG-binding protein CIBZ suppresses myogenic differentiation by directly inhibiting myogenin expression. Cell Res, 2011. 21(11): p. 1578-90.
36. Zhang, C.L., T.A. McKinsey, and E.N. Olson, Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol, 2002. 22(20): p. 7302-12.
37. Mal, A. and M.L. Harter, MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis. Proc Natl Acad Sci U S A, 2003. 100(4): p. 1735-9.
38. Ling, B.M., et al., Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proc Natl Acad Sci U S A, 2012. 109(3): p. 841-6.
39. Sartorelli, V., et al., Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell, 1999. 4(5): p. 725-34.
40. Dilworth, F.J., et al., In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation. Proc Natl Acad Sci U S A, 2004. 101(32): p. 11593-8.
41. Asp, P., et al., Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A, 2011. 108(22): p. E149-58.
42. Puri, P.L., et al., Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell, 1997. 1(1): p. 35-45.
43. Lee, Y.H., et al., Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci U S A, 2005. 102(10): p. 3611-6.
44. Lee, J. and M.T. Bedford, PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Rep, 2002. 3(3): p. 268-73.
45. Gao, X., et al., CARM1 activates myogenin gene via PCAF in the early differentiation of TPA-induced rhabdomyosarcoma-derived cells. J Cell Biochem, 2010. 110(1): p. 162-70.
46. Fearon, K., et al., Definition and classification of cancer cachexia: an international consensus. Lancet Oncol, 2011. 12(5): p. 489-95.
47. Rausch, V., et al., Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis, 2021. 10(1): p. 1.
48. von Haehling, S. and S.D. Anker, Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle, 2010. 1(1): p. 1-5.
49. Thibaut, M.M., et al., Inflammation-induced cholestasis in cancer cachexia. J Cachexia Sarcopenia Muscle, 2021. 12(1): p. 70-90.
50. Baracos, V.E., et al., Cancer-associated cachexia. Nat Rev Dis Primers, 2018. 4: p. 17105.
51. Pressoir, M., et al., Prevalence, risk factors and clinical implications of malnutrition in French Comprehensive Cancer Centres. Br J Cancer, 2010. 102(6): p. 966-71.
52. Bozzetti, F. and S.W. Group, Screening the nutritional status in oncology: a preliminary report on 1,000 outpatients. Support Care Cancer, 2009. 17(3): p. 279-84.
53. Segura, A., et al., An epidemiological evaluation of the prevalence of malnutrition in Spanish patients with locally advanced or metastatic cancer. Clin Nutr, 2005. 24(5): p. 801-14.
54. Hebuterne, X., et al., Prevalence of malnutrition and current use of nutrition support in patients with cancer. JPEN J Parenter Enteral Nutr, 2014. 38(2): p. 196-204.
55. Baumgartner, R.N., et al., Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol, 1998. 147(8): p. 755-63.
56. Prado, C.M., et al., Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol, 2008. 9(7): p. 629-35.
57. Janssen, I., S.B. Heymsfield, and R. Ross, Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc, 2002. 50(5): p. 889-96.
58. Argiles, J.M., et al., Cancer cachexia: understanding the molecular basis. Nat Rev Cancer, 2014. 14(11): p. 754-62.
59. Cao, Z., et al., Biomarkers for Cancer Cachexia: A Mini Review. Int J Mol Sci, 2021. 22(9).
60. Gray, S. and B. Axelsson, The prevalence of deranged C-reactive protein and albumin in patients with incurable cancer approaching death. PLoS One, 2018. 13(3): p. e0193693.
61. Han, Y., et al., Tumor necrosis factor-alpha-inducible IkappaBalpha proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-kappab activation. J Biol Chem, 1999. 274(2): p. 787-94.
62. Scheede-Bergdahl, C., et al., Is IL-6 the best pro-inflammatory biomarker of clinical outcomes of cancer cachexia? Clin Nutr, 2012. 31(1): p. 85-8.
63. Moldawer, L.L., M.A. Rogy, and S.F. Lowry, The role of cytokines in cancer cachexia. JPEN J Parenter Enteral Nutr, 1992. 16(6 Suppl): p. 43S-49S.
64. Noguchi, Y., et al., Are cytokines possible mediators of cancer cachexia? Surg Today, 1996. 26(7): p. 467-75.
65. Matthys, P. and A. Billiau, Cytokines and cachexia. Nutrition, 1997. 13(9): p. 763-70.
66. Suh, S.Y., et al., Interleukin-6 but not tumour necrosis factor-alpha predicts survival in patients with advanced cancer. Support Care Cancer, 2013. 21(11): p. 3071-7.
67. Williams, A., et al., The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery, 1999. 126(4): p. 744-750.
68. Doyle, A., et al., Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J, 2011. 25(1): p. 99-110.
69. Furuno, K. and A.L. Goldberg, The activation of protein degradation in muscle by Ca2+ or muscle injury does not involve a lysosomal mechanism. Biochem J, 1986. 237(3): p. 859-64.
70. Haddad, F., et al., IL-6-induced skeletal muscle atrophy. J Appl Physiol (1985), 2005. 98(3): p. 911-7.
71. Washington, T.A., et al., Skeletal muscle mass recovery from atrophy in IL-6 knockout mice. Acta Physiol (Oxf), 2011. 202(4): p. 657-69.
72. Huang, Z., et al., Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. Ann Transl Med, 2020. 8(24): p. 1681.
73. White, J.P., et al., Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK. Am J Physiol Endocrinol Metab, 2013. 304(10): p. E1042-52.
74. White, J.P., et al., Muscle oxidative capacity during IL-6-dependent cancer cachexia. Am J Physiol Regul Integr Comp Physiol, 2011. 300(2): p. R201-11.
75. Scott, H.R., et al., The relationship between weight loss and interleukin 6 in non-small-cell lung cancer. Br J Cancer, 1996. 73(12): p. 1560-2.
76. Batista, M.L., Jr., et al., Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine, 2013. 61(2): p. 532-9.
77. Zimmers, T.A., M.L. Fishel, and A. Bonetto, STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol, 2016. 54: p. 28-41.
78. Wahid, I., The role of neuropeptide y in cancer-associated anorexia and its correlation with interleukin-1 beta. Annals of Oncology, 2017. 28.
79. Laird, B.J., et al., The Emerging Role of Interleukin 1beta (IL-1beta) in Cancer Cachexia. Inflammation, 2021. 44(4): p. 1223-1228.
80. Graziano, F., et al., Prognostic role of interleukin-1beta gene and interleukin-1 receptor antagonist gene polymorphisms in patients with advanced gastric cancer. J Clin Oncol, 2005. 23(10): p. 2339-45.
81. Zhang, D., et al., Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric cancer. BMC Cancer, 2007. 7: p. 45.
82. McCarthy, H.D., S. Dryden, and G. Williams, Interleukin-1 beta-induced anorexia and pyrexia in rat: relationship to hypothalamic neuropeptide Y. Am J Physiol, 1995. 269(5 Pt 1): p. E852-7.
83. Sugarman, B.J., et al., Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science, 1985. 230(4728): p. 943-5.
84. Li, Y.P., et al., Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes. Antioxid Redox Signal, 1999. 1(1): p. 97-104.
85. Li, Y.P., et al., Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J, 1998. 12(10): p. 871-80.
86. Oliff, A., et al., Tumors secreting human TNF/cachectin induce cachexia in mice. Cell, 1987. 50(4): p. 555-63.
87. Peixoto da Silva, S., et al., Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. J Cachexia Sarcopenia Muscle, 2020. 11(3): p. 619-635.
88. Patel, H.J. and B.M. Patel, TNF-alpha and cancer cachexia: Molecular insights and clinical implications. Life Sci, 2017. 170: p. 56-63.
89. Guttridge, D.C., et al., NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science, 2000. 289(5488): p. 2363-6.
90. Ruan, H., et al., Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes, 2002. 51(5): p. 1319-36.
91. Hotamisligil, G.S., Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes, 1999. 107(2): p. 119-25.
92. Li, Y.P., et al., TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J, 2005. 19(3): p. 362-70.
93. Frost, R.A., et al., Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle. Am J Physiol Endocrinol Metab, 2007. 292(2): p. E501-12.
94. Moylan, J.S., et al., TNF induction of atrogin-1/MAFbx mRNA depends on Foxo4 expression but not AKT-Foxo1/3 signaling. Am J Physiol Cell Physiol, 2008. 295(4): p. C986-93.
95. Sishi, B.J. and A.M. Engelbrecht, Tumor necrosis factor alpha (TNF-alpha) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes. Cytokine, 2011. 54(2): p. 173-84.
96. Sartori, R., et al., Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Sci Transl Med, 2021. 13(605).
97. Boehm, I., et al., Neuromuscular junctions are stable in patients with cancer cachexia. J Clin Invest, 2020. 130(3): p. 1461-1465.
98. Moresi, V., et al., Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell, 2010. 143(1): p. 35-45.
99. Marchildon, F., et al., Expression of CCAAT/Enhancer Binding Protein Beta in Muscle Satellite Cells Inhibits Myogenesis in Cancer Cachexia. PLoS One, 2015. 10(12): p. e0145583.
100. Acharyya, S., et al., Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest, 2004. 114(3): p. 370-8.
101. Marchildon, F., et al., CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia. Cell Death Dis, 2016. 7(2): p. e2109.
102. Sciorati, C., et al., Necdin is expressed in cachectic skeletal muscle to protect fibers from tumor-induced wasting. J Cell Sci, 2009. 122(Pt 8): p. 1119-25.
103. Brown, J.L., et al., Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice. J Cachexia Sarcopenia Muscle, 2018. 9(5): p. 987-1002.
104. Brzeszczynska, J., et al., Alterations in the in vitro and in vivo regulation of muscle regeneration in healthy ageing and the influence of sarcopenia. J Cachexia Sarcopenia Muscle, 2018. 9(1): p. 93-105.
105. Sun, H., et al., Transcriptome Analysis of Immune Receptor Activation and Energy Metabolism Reduction as the Underlying Mechanisms in Interleukin-6-Induced Skeletal Muscle Atrophy. Front Immunol, 2021. 12: p. 730070.
106. Bonetto, A., et al., The Colon-26 Carcinoma Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia. J Vis Exp, 2016(117).
107. Lu, Y., et al., Network pharmacology-based strategy to investigate the bioactive ingredients and molecular mechanism of Evodia rutaecarpa in colorectal cancer. BMC Complement Med Ther, 2023. 23(1): p. 433.
108. Setiawan, T., et al., Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol, 2023. 16(1): p. 54.
109. Millay, D.P., et al., Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature, 2013. 499(7458): p. 301-5.
110. Pirskanen, A., J.C. Kiefer, and S.D. Hauschka, IGFs, insulin, Shh, bFGF, and TGF-beta1 interact synergistically to promote somite myogenesis in vitro. Dev Biol, 2000. 224(2): p. 189-203.
111. Wu, Y.J., et al., Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PLoS One, 2014. 9(2): p. e88450.
指導教授 陳盛良(Shen-Liang Chen) 審核日期 2024-10-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明