參考文獻 |
1. Frontera, W.R. and J. Ochala, Skeletal muscle: a brief review of structure and function. Calcif Tissue Int, 2015. 96(3): p. 183-95.
2. Comai, G. and S. Tajbakhsh, Molecular and cellular regulation of skeletal myogenesis. Curr Top Dev Biol, 2014. 110: p. 1-73.
3. Aoyama, H. and K. Asamoto, Determination of somite cells: independence of cell differentiation and morphogenesis. Development, 1988. 104(1): p. 15-28.
4. Denetclaw, W.F., Jr., B. Christ, and C.P. Ordahl, Location and growth of epaxial myotome precursor cells. Development, 1997. 124(8): p. 1601-10.
5. Cheng, L., et al., The epaxial-hypaxial subdivision of the avian somite. Dev Biol, 2004. 274(2): p. 348-69.
6. Horsley, V., et al., IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell, 2003. 113(4): p. 483-94.
7. Buckingham, M. and P.W. Rigby, Gene regulatory networks and transcriptional mechanisms that control myogenesis. Dev Cell, 2014. 28(3): p. 225-38.
8. Schultz, E., D.L. Jaryszak, and C.R. Valliere, Response of satellite cells to focal skeletal muscle injury. Muscle Nerve, 1985. 8(3): p. 217-22.
9. Buckingham, M., Skeletal muscle progenitor cells and the role of Pax genes. C R Biol, 2007. 330(6-7): p. 530-3.
10. Relaix, F., et al., Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol, 2006. 172(1): p. 91-102.
11. Relaix, F., et al., A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature, 2005. 435(7044): p. 948-53.
12. Crescenzi, M., et al., MyoD induces growth arrest independent of differentiation in normal and transformed cells. Proc Natl Acad Sci U S A, 1990. 87(21): p. 8442-6.
13. Halevy, O., et al., Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. Science, 1995. 267(5200): p. 1018-21.
14. Wilson, E.M. and P. Rotwein, Control of MyoD function during initiation of muscle differentiation by an autocrine signaling pathway activated by insulin-like growth factor-II. J Biol Chem, 2006. 281(40): p. 29962-71.
15. Charge, S.B. and M.A. Rudnicki, Cellular and molecular regulation of muscle regeneration. Physiol Rev, 2004. 84(1): p. 209-38.
16. Sabourin, L.A., et al., Reduced differentiation potential of primary MyoD-/- myogenic cells derived from adult skeletal muscle. J Cell Biol, 1999. 144(4): p. 631-43.
17. Tajbakhsh, S., Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med, 2009. 266(4): p. 372-89.
18. Hollnagel, A., et al., The cell adhesion molecule M-cadherin is not essential for muscle development and regeneration. Mol Cell Biol, 2002. 22(13): p. 4760-70.
19. Chen, S.L., et al., Post-transcriptional regulation of myogenic transcription factors during muscle development and pathogenesis. J Muscle Res Cell Motil, 2024. 45(1): p. 21-39.
20. Barndt, R.J. and Y. Zhuang, Controlling lymphopoiesis with a combinatorial E-protein code. Cold Spring Harb Symp Quant Biol, 1999. 64: p. 45-50.
21. Blackwell, T.K. and H. Weintraub, Differences and similarities in DNA-binding preferences of MyoD and E2A protein complexes revealed by binding site selection. Science, 1990. 250(4984): p. 1104-10.
22. Shirakawa, T., et al., Factors Regulating or Regulated by Myogenic Regulatory Factors in Skeletal Muscle Stem Cells. Cells, 2022. 11(9).
23. Tapscott, S.J., The circuitry of a master switch: Myod and the regulation of skeletal muscle gene transcription. Development, 2005. 132(12): p. 2685-95.
24. Edmondson, D.G., T.J. Brennan, and E.N. Olson, Mitogenic repression of myogenin autoregulation. J Biol Chem, 1991. 266(32): p. 21343-6.
25. Sirri, V., M.P. Leibovitch, and S.A. Leibovitch, Muscle regulatory factor MRF4 activates differentiation in rhabdomyosarcoma RD cells through a positive-acting C-terminal protein domain. Oncogene, 2003. 22(36): p. 5658-66.
26. Zhang, W., R.R. Behringer, and E.N. Olson, Inactivation of the myogenic bHLH gene MRF4 results in up-regulation of myogenin and rib anomalies. Genes Dev, 1995. 9(11): p. 1388-99.
27. Asfour, H.A., M.Z. Allouh, and R.S. Said, Myogenic regulatory factors: The orchestrators of myogenesis after 30 years of discovery. Exp Biol Med (Maywood), 2018. 243(2): p. 118-128.
28. Rudnicki, M.A., et al., Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development. Cell, 1992. 71(3): p. 383-90.
29. Braun, T., et al., Targeted inactivation of the muscle regulatory gene Myf-5 results in abnormal rib development and perinatal death. Cell, 1992. 71(3): p. 369-82.
30. Rudnicki, M.A., et al., MyoD or Myf-5 is required for the formation of skeletal muscle. Cell, 1993. 75(7): p. 1351-9.
31. Hasty, P., et al., Muscle deficiency and neonatal death in mice with a targeted mutation in the myogenin gene. Nature, 1993. 364(6437): p. 501-6.
32. Nabeshima, Y., et al., Myogenin gene disruption results in perinatal lethality because of severe muscle defect. Nature, 1993. 364(6437): p. 532-5.
33. Berkes, C.A., et al., Pbx marks genes for activation by MyoD indicating a role for a homeodomain protein in establishing myogenic potential. Mol Cell, 2004. 14(4): p. 465-77.
34. Berghella, L., et al., A highly conserved molecular switch binds MSY-3 to regulate myogenin repression in postnatal muscle. Genes Dev, 2008. 22(15): p. 2125-38.
35. Oikawa, Y., et al., The methyl-CpG-binding protein CIBZ suppresses myogenic differentiation by directly inhibiting myogenin expression. Cell Res, 2011. 21(11): p. 1578-90.
36. Zhang, C.L., T.A. McKinsey, and E.N. Olson, Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol, 2002. 22(20): p. 7302-12.
37. Mal, A. and M.L. Harter, MyoD is functionally linked to the silencing of a muscle-specific regulatory gene prior to skeletal myogenesis. Proc Natl Acad Sci U S A, 2003. 100(4): p. 1735-9.
38. Ling, B.M., et al., Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proc Natl Acad Sci U S A, 2012. 109(3): p. 841-6.
39. Sartorelli, V., et al., Acetylation of MyoD directed by PCAF is necessary for the execution of the muscle program. Mol Cell, 1999. 4(5): p. 725-34.
40. Dilworth, F.J., et al., In vitro transcription system delineates the distinct roles of the coactivators pCAF and p300 during MyoD/E47-dependent transactivation. Proc Natl Acad Sci U S A, 2004. 101(32): p. 11593-8.
41. Asp, P., et al., Genome-wide remodeling of the epigenetic landscape during myogenic differentiation. Proc Natl Acad Sci U S A, 2011. 108(22): p. E149-58.
42. Puri, P.L., et al., Differential roles of p300 and PCAF acetyltransferases in muscle differentiation. Mol Cell, 1997. 1(1): p. 35-45.
43. Lee, Y.H., et al., Regulation of coactivator complex assembly and function by protein arginine methylation and demethylimination. Proc Natl Acad Sci U S A, 2005. 102(10): p. 3611-6.
44. Lee, J. and M.T. Bedford, PABP1 identified as an arginine methyltransferase substrate using high-density protein arrays. EMBO Rep, 2002. 3(3): p. 268-73.
45. Gao, X., et al., CARM1 activates myogenin gene via PCAF in the early differentiation of TPA-induced rhabdomyosarcoma-derived cells. J Cell Biochem, 2010. 110(1): p. 162-70.
46. Fearon, K., et al., Definition and classification of cancer cachexia: an international consensus. Lancet Oncol, 2011. 12(5): p. 489-95.
47. Rausch, V., et al., Understanding the common mechanisms of heart and skeletal muscle wasting in cancer cachexia. Oncogenesis, 2021. 10(1): p. 1.
48. von Haehling, S. and S.D. Anker, Cachexia as a major underestimated and unmet medical need: facts and numbers. J Cachexia Sarcopenia Muscle, 2010. 1(1): p. 1-5.
49. Thibaut, M.M., et al., Inflammation-induced cholestasis in cancer cachexia. J Cachexia Sarcopenia Muscle, 2021. 12(1): p. 70-90.
50. Baracos, V.E., et al., Cancer-associated cachexia. Nat Rev Dis Primers, 2018. 4: p. 17105.
51. Pressoir, M., et al., Prevalence, risk factors and clinical implications of malnutrition in French Comprehensive Cancer Centres. Br J Cancer, 2010. 102(6): p. 966-71.
52. Bozzetti, F. and S.W. Group, Screening the nutritional status in oncology: a preliminary report on 1,000 outpatients. Support Care Cancer, 2009. 17(3): p. 279-84.
53. Segura, A., et al., An epidemiological evaluation of the prevalence of malnutrition in Spanish patients with locally advanced or metastatic cancer. Clin Nutr, 2005. 24(5): p. 801-14.
54. Hebuterne, X., et al., Prevalence of malnutrition and current use of nutrition support in patients with cancer. JPEN J Parenter Enteral Nutr, 2014. 38(2): p. 196-204.
55. Baumgartner, R.N., et al., Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol, 1998. 147(8): p. 755-63.
56. Prado, C.M., et al., Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol, 2008. 9(7): p. 629-35.
57. Janssen, I., S.B. Heymsfield, and R. Ross, Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J Am Geriatr Soc, 2002. 50(5): p. 889-96.
58. Argiles, J.M., et al., Cancer cachexia: understanding the molecular basis. Nat Rev Cancer, 2014. 14(11): p. 754-62.
59. Cao, Z., et al., Biomarkers for Cancer Cachexia: A Mini Review. Int J Mol Sci, 2021. 22(9).
60. Gray, S. and B. Axelsson, The prevalence of deranged C-reactive protein and albumin in patients with incurable cancer approaching death. PLoS One, 2018. 13(3): p. e0193693.
61. Han, Y., et al., Tumor necrosis factor-alpha-inducible IkappaBalpha proteolysis mediated by cytosolic m-calpain. A mechanism parallel to the ubiquitin-proteasome pathway for nuclear factor-kappab activation. J Biol Chem, 1999. 274(2): p. 787-94.
62. Scheede-Bergdahl, C., et al., Is IL-6 the best pro-inflammatory biomarker of clinical outcomes of cancer cachexia? Clin Nutr, 2012. 31(1): p. 85-8.
63. Moldawer, L.L., M.A. Rogy, and S.F. Lowry, The role of cytokines in cancer cachexia. JPEN J Parenter Enteral Nutr, 1992. 16(6 Suppl): p. 43S-49S.
64. Noguchi, Y., et al., Are cytokines possible mediators of cancer cachexia? Surg Today, 1996. 26(7): p. 467-75.
65. Matthys, P. and A. Billiau, Cytokines and cachexia. Nutrition, 1997. 13(9): p. 763-70.
66. Suh, S.Y., et al., Interleukin-6 but not tumour necrosis factor-alpha predicts survival in patients with advanced cancer. Support Care Cancer, 2013. 21(11): p. 3071-7.
67. Williams, A., et al., The expression of genes in the ubiquitin-proteasome proteolytic pathway is increased in skeletal muscle from patients with cancer. Surgery, 1999. 126(4): p. 744-750.
68. Doyle, A., et al., Toll-like receptor 4 mediates lipopolysaccharide-induced muscle catabolism via coordinate activation of ubiquitin-proteasome and autophagy-lysosome pathways. FASEB J, 2011. 25(1): p. 99-110.
69. Furuno, K. and A.L. Goldberg, The activation of protein degradation in muscle by Ca2+ or muscle injury does not involve a lysosomal mechanism. Biochem J, 1986. 237(3): p. 859-64.
70. Haddad, F., et al., IL-6-induced skeletal muscle atrophy. J Appl Physiol (1985), 2005. 98(3): p. 911-7.
71. Washington, T.A., et al., Skeletal muscle mass recovery from atrophy in IL-6 knockout mice. Acta Physiol (Oxf), 2011. 202(4): p. 657-69.
72. Huang, Z., et al., Inhibition of IL-6/JAK/STAT3 pathway rescues denervation-induced skeletal muscle atrophy. Ann Transl Med, 2020. 8(24): p. 1681.
73. White, J.P., et al., Muscle mTORC1 suppression by IL-6 during cancer cachexia: a role for AMPK. Am J Physiol Endocrinol Metab, 2013. 304(10): p. E1042-52.
74. White, J.P., et al., Muscle oxidative capacity during IL-6-dependent cancer cachexia. Am J Physiol Regul Integr Comp Physiol, 2011. 300(2): p. R201-11.
75. Scott, H.R., et al., The relationship between weight loss and interleukin 6 in non-small-cell lung cancer. Br J Cancer, 1996. 73(12): p. 1560-2.
76. Batista, M.L., Jr., et al., Adipose tissue-derived factors as potential biomarkers in cachectic cancer patients. Cytokine, 2013. 61(2): p. 532-9.
77. Zimmers, T.A., M.L. Fishel, and A. Bonetto, STAT3 in the systemic inflammation of cancer cachexia. Semin Cell Dev Biol, 2016. 54: p. 28-41.
78. Wahid, I., The role of neuropeptide y in cancer-associated anorexia and its correlation with interleukin-1 beta. Annals of Oncology, 2017. 28.
79. Laird, B.J., et al., The Emerging Role of Interleukin 1beta (IL-1beta) in Cancer Cachexia. Inflammation, 2021. 44(4): p. 1223-1228.
80. Graziano, F., et al., Prognostic role of interleukin-1beta gene and interleukin-1 receptor antagonist gene polymorphisms in patients with advanced gastric cancer. J Clin Oncol, 2005. 23(10): p. 2339-45.
81. Zhang, D., et al., Association of IL-1beta gene polymorphism with cachexia from locally advanced gastric cancer. BMC Cancer, 2007. 7: p. 45.
82. McCarthy, H.D., S. Dryden, and G. Williams, Interleukin-1 beta-induced anorexia and pyrexia in rat: relationship to hypothalamic neuropeptide Y. Am J Physiol, 1995. 269(5 Pt 1): p. E852-7.
83. Sugarman, B.J., et al., Recombinant human tumor necrosis factor-alpha: effects on proliferation of normal and transformed cells in vitro. Science, 1985. 230(4728): p. 943-5.
84. Li, Y.P., et al., Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes. Antioxid Redox Signal, 1999. 1(1): p. 97-104.
85. Li, Y.P., et al., Skeletal muscle myocytes undergo protein loss and reactive oxygen-mediated NF-kappaB activation in response to tumor necrosis factor alpha. FASEB J, 1998. 12(10): p. 871-80.
86. Oliff, A., et al., Tumors secreting human TNF/cachectin induce cachexia in mice. Cell, 1987. 50(4): p. 555-63.
87. Peixoto da Silva, S., et al., Cancer cachexia and its pathophysiology: links with sarcopenia, anorexia and asthenia. J Cachexia Sarcopenia Muscle, 2020. 11(3): p. 619-635.
88. Patel, H.J. and B.M. Patel, TNF-alpha and cancer cachexia: Molecular insights and clinical implications. Life Sci, 2017. 170: p. 56-63.
89. Guttridge, D.C., et al., NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science, 2000. 289(5488): p. 2363-6.
90. Ruan, H., et al., Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes: nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes, 2002. 51(5): p. 1319-36.
91. Hotamisligil, G.S., Mechanisms of TNF-alpha-induced insulin resistance. Exp Clin Endocrinol Diabetes, 1999. 107(2): p. 119-25.
92. Li, Y.P., et al., TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J, 2005. 19(3): p. 362-70.
93. Frost, R.A., et al., Hormone, cytokine, and nutritional regulation of sepsis-induced increases in atrogin-1 and MuRF1 in skeletal muscle. Am J Physiol Endocrinol Metab, 2007. 292(2): p. E501-12.
94. Moylan, J.S., et al., TNF induction of atrogin-1/MAFbx mRNA depends on Foxo4 expression but not AKT-Foxo1/3 signaling. Am J Physiol Cell Physiol, 2008. 295(4): p. C986-93.
95. Sishi, B.J. and A.M. Engelbrecht, Tumor necrosis factor alpha (TNF-alpha) inactivates the PI3-kinase/PKB pathway and induces atrophy and apoptosis in L6 myotubes. Cytokine, 2011. 54(2): p. 173-84.
96. Sartori, R., et al., Perturbed BMP signaling and denervation promote muscle wasting in cancer cachexia. Sci Transl Med, 2021. 13(605).
97. Boehm, I., et al., Neuromuscular junctions are stable in patients with cancer cachexia. J Clin Invest, 2020. 130(3): p. 1461-1465.
98. Moresi, V., et al., Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell, 2010. 143(1): p. 35-45.
99. Marchildon, F., et al., Expression of CCAAT/Enhancer Binding Protein Beta in Muscle Satellite Cells Inhibits Myogenesis in Cancer Cachexia. PLoS One, 2015. 10(12): p. e0145583.
100. Acharyya, S., et al., Cancer cachexia is regulated by selective targeting of skeletal muscle gene products. J Clin Invest, 2004. 114(3): p. 370-8.
101. Marchildon, F., et al., CCAAT/enhancer binding protein beta protects muscle satellite cells from apoptosis after injury and in cancer cachexia. Cell Death Dis, 2016. 7(2): p. e2109.
102. Sciorati, C., et al., Necdin is expressed in cachectic skeletal muscle to protect fibers from tumor-induced wasting. J Cell Sci, 2009. 122(Pt 8): p. 1119-25.
103. Brown, J.L., et al., Protein imbalance in the development of skeletal muscle wasting in tumour-bearing mice. J Cachexia Sarcopenia Muscle, 2018. 9(5): p. 987-1002.
104. Brzeszczynska, J., et al., Alterations in the in vitro and in vivo regulation of muscle regeneration in healthy ageing and the influence of sarcopenia. J Cachexia Sarcopenia Muscle, 2018. 9(1): p. 93-105.
105. Sun, H., et al., Transcriptome Analysis of Immune Receptor Activation and Energy Metabolism Reduction as the Underlying Mechanisms in Interleukin-6-Induced Skeletal Muscle Atrophy. Front Immunol, 2021. 12: p. 730070.
106. Bonetto, A., et al., The Colon-26 Carcinoma Tumor-bearing Mouse as a Model for the Study of Cancer Cachexia. J Vis Exp, 2016(117).
107. Lu, Y., et al., Network pharmacology-based strategy to investigate the bioactive ingredients and molecular mechanism of Evodia rutaecarpa in colorectal cancer. BMC Complement Med Ther, 2023. 23(1): p. 433.
108. Setiawan, T., et al., Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol, 2023. 16(1): p. 54.
109. Millay, D.P., et al., Myomaker is a membrane activator of myoblast fusion and muscle formation. Nature, 2013. 499(7458): p. 301-5.
110. Pirskanen, A., J.C. Kiefer, and S.D. Hauschka, IGFs, insulin, Shh, bFGF, and TGF-beta1 interact synergistically to promote somite myogenesis in vitro. Dev Biol, 2000. 224(2): p. 189-203.
111. Wu, Y.J., et al., Insulin and LiCl synergistically rescue myogenic differentiation of FoxO1 over-expressed myoblasts. PLoS One, 2014. 9(2): p. e88450. |