參考文獻 |
1. Aida, M., Beis, D., Heidstra, R., Willemsen, V., Blilou, I., Galinha, C., Nussaume,
L., Noh, Y. S., Amasino, R., & Scheres, B. (2004). The PLETHORA genes
mediate patterning of the Arabidopsis root stem cell niche. Cell, 119(1), 109–120.
2. Aljuaid, B. S., & Ashour, H. (2022). Exogenous γ-Aminobutyric Acid (GABA)
Application Mitigates Salinity Stress in Maize Plants. Life (Basel, Switzerland),
12(11), 1860.
3. Bari, R., & Jones, J. D. (2009). Role of plant hormones in plant defence responses.
Plant molecular biology, 69(4), 473–488.
4. Bates, T.R., and Lynch, J.P. (2000). The efficiency of Arabidopsis root hairs in
phosphorus acquisition. Plant Physiol. 124: 991–998.
5. Bernard, S.M., and Habash, D.Z. (2009). The importance of cytosolic glutamine
synthetase in nitrogen assimilation and recycling. New Phytol. 182: 608–620.
6. Bown, A. W., & Shelp, B. J. (2016). Plant GABA: Not Just a Metabolite. Trends
in plant science, 21(10), 811–813.
7. Broekaert, W.F., Delaure, S.L., De Bolle, M.F., and Cammue, B.P. (2006). The
role of ethylene in host-pathogen interactions. Annu. Rev. Phytopathol. 44: 393
416.
8. Bruex, A., Kainkaryam, R. M., Wieckowski, Y., Kang, Y. H., Bernhardt, C., Xia,
Y., Zheng, X., Wang, J. Y., Lee, M. M., Benfey, P., Woolf, P. J., & Schiefelbein,
J. (2012). A gene regulatory network for root epidermis cell differentiation in
Arabidopsis. PLoS genetics, 8(1), e1002446.
9. Campbell, W.H. (1996). Nitrate reductase biochemistry comes of age. Plant
Physiol. 111: 355–361.
49
10. Chehab, E. W., Kim, S., Savchenko, T., Kliebenstein, D., Dehesh, K., & Braam, J.
(2011). Intronic T-DNA insertion renders Arabidopsis opr3 a conditional jasmonic
acid-producing mutant. Plant physiology, 156(2), 770–778.
11. Chen, P., Ge, Y., Chen, L., Yan, F., Cai, L., Zhao, H., Lei, D., Jiang, J., Wang, M.,
& Tao, Y. (2022). SAV4 is required for ethylene-induced root hair growth
through stabilizing PIN2 auxin transporter in Arabidopsis. The New phytologist,
234(5), 1735–1752.
12. Chen, S., & Wang, S. (2019). GLABRA2, A Common Regulator for Epidermal
Cell Fate Determination and Anthocyanin Biosynthesis in Arabidopsis.
International journal of molecular sciences, 20(20), 4997.
13. Chiu, J., DeSalle, R., Lam, H. M., Meisel, L., & Coruzzi, G. (1999). Molecular
evolution of glutamate receptors: a primitive signaling mechanism that existed
before plants and animals diverged. Molecular biology and evolution, 16(6), 826
838.
14. Coruzzi G. M. (2003). Primary N-assimilation into Amino Acids in Arabidopsis.
The arabidopsis book, 2, e0010.
15. De Rybel, B., Vassileva, V., Parizot, B., et al. (2010). A novel aux/IAA28
signaling cascade activates GATA23-dependent specification of lateral root
founder cell identity. Curr. Biol. 20: 1697–1706.
16. Delteil, A., Gobbato, E., Cayrol, B., Estevan, J., Michel-Romiti, C., Dievart, A.,
Kroj, T., & Morel, J. B. (2016). Several wall-associated kinases participate
positively and negatively in basal defense against rice blast fungus. BMC plant
biology, 16, 17.
17. Dempsey, D.A., Vlot, A.C., Wildermuth, M.C., and Klessig, D.F. (2011).
Salicylic acid biosynthesis and metabolism. Arabidopsis Book 9: e0156.
50
18. Dennison, K. L., & Spalding, E. P. (2000). Glutamate-gated calcium fluxes in
Arabidopsis. Plant physiology, 124(4), 1511–1514.
19. Dixon, D. P., Skipsey, M., & Edwards, R. (2010). Roles for glutathione
transferases in plant secondary metabolism. Phytochemistry, 71(4), 338–350.
20. Dixon, R.A., and Paiva, N.L. (1995). Stress-induced phenylpropanoid
metabolism. Plant Cell 7: 1085–1097.
21. Dubois, M., Van den Broeck, L., & Inze, D. (2018). The Pivotal Role of Ethylene
in Plant Growth. Trends in plant science, 23(4), 311–323.
22. Dubreuil-Maurizi, C., and Poinssot, B. (2012). Role of glutathione in plant
signaling under biotic stress. Plant Signal. Behav. 7: 210–212.
23. Durrant, W.E., and Dong, X. (2004). Systemic acquired resistance. Annu. Rev.
Phytopathol. 42: 185–209.
24. Ferrer, J.L., Austin, M.B., Stewart, C., and Noel, J.P. (2008). Structure and
function of enzymes involved in the biosynthesis of phenylpropanoids. Plant
Physiol. Biochem. 46: 356–370.
25. Foehse D, Jungk A. 1983. Influence of phosphate and nitrate supply on root hair
formation of rape, spinach and tomato plants. Plant and Soil 74, 359–368.
26. Fontaine, J. X., Terce-Laforgue, T., Armengaud, P., Clement, G., Renou, J. P.,
Pelletier, S., Catterou, M., Azzopardi, M., Gibon, Y., Lea, P. J., Hirel, B., &
Dubois, F. (2012). Characterization of a NADH-dependent glutamate
dehydrogenase mutant of Arabidopsis demonstrates the key role of this enzyme in
root carbon and nitrogen metabolism. The Plant cell, 24(10), 4044–4065.
27. Forde, B. G., & Roberts, M. R. (2014). Glutamate receptor-like channels in plants:
a role as amino acid sensors in plant defence?. F1000prime reports, 6, 37.
51
28. Forde, B.G., and Lea, P.J. (2007). Glutamate in plants: metabolism, regulation,
and signalling. J. Exp. Bot. 58: 2339–2358.
29. Foyer, C.H., and Noctor, G. (2011). Ascorbate and glutathione: the heart of the
redox hub. Plant Physiol. 155: 2–18.
30. Foyer, C.H., Parry, M.A.J., and Noctor, G. (2003). Markers and signals associated
with nitrogen assimilation in higher plants. J. Exp. Bot. 54: 585–593.
31. Glazebrook, J. (2005). Contrasting mechanisms of defense against biotrophic and
necrotrophic pathogens. Annu. Rev. Phytopathol. 43: 205–227.
32. Gomes, G. L. B., & Scortecci, K. C. (2021). Auxin and its role in plant
development: structure, signalling, regulation and response mechanisms. Plant
biology (Stuttgart, Germany), 23(6), 894–904.
33. Goto, Y., Maki, N., Ichihashi, Y., Kitazawa, D., Igarashi, D., Kadota, Y., &
Shirasu, K. (2020). Exogenous Treatment with Glutamate Induces Immune
Responses in Arabidopsis. Molecular plant-microbe interactions : MPMI, 33(3),
474–487.
34. Grierson, C., Schiefelbein, J., and Ringli, C. (2014). Root hairs. Arabidopsis Book
12: e0172.
35. Hanson, A. D., & Gregory, J. F., 3rd (2011). Folate biosynthesis, turnover, and
transport in plants. Annual review of plant biology, 62, 105–125.
36. Hasan, M. M., Alabdallah, N. M., Alharbi, B. M., Waseem, M., Yao, G., Liu, X.
D., Abd El-Gawad, H. G., El-Yazied, A. A., Ibrahim, M. F. M., Jahan, M. S., &
Fang, X. W. (2021). GABA: A Key Player in Drought Stress Resistance in Plants.
International journal of molecular sciences, 22(18), 10136.
37. Hasanuzzaman, M., Nahar, K., Anee, T. I., & Fujita, M. (2017). Glutathione in
plants: biosynthesis and physiological role in environmental stress tolerance.
52
Physiology and molecular biology of plants: an international journal of functional
plant biology, 23(2), 249–268.
38. Hodges, M. (2002). Enzyme redundancy and the importance of 2-oxoglutarate in
plant ammonium assimilation. J. Exp. Bot. 53: 905–916.
39. Howe, G.A., Major, I.T., and Koo, A.J.K. (2018). Modularity in jasmonate
signaling for multistress resilience. Annu. Rev. Plant Biol. 69: 387–415.
40. Hsieh MH, Goodman HM. The Arabidopsis IspH homolog is involved in the
plastid nonmevalonate pathway of isoprenoid biosynthesis. Plant Physiol.
2005:138(2):641–653.
41. Hu, Q. Q., Shu, J. Q., Li, W. M., & Wang, G. Z. (2021). Role of Auxin and
Nitrate Signaling in the Development of Root System Architecture. Frontiers in
plant science, 12, 690363.
42. Huang, J., Zhao, X., Burger, M., Chory, J., and Wang, X. (2023). The role of
ethylene in plant temperature stress response. Trends Plant Sci. 28: 808–824.
43. Iqbal, N., Trivellini, A., Masood, A., Ferrante, A., & Khan, N. A. (2013). Current
understanding on ethylene signaling in plants: the influence of nutrient
availability. Plant physiology and biochemistry : PPB, 73, 128–138.
44. Ishiyama, K., Inoue, E., Watanabe-Takahashi, A., Obara, M., Yamaya, T., and
Takahashi, H. (2004). Kinetic properties and ammonium-dependent regulation of
cytosolic glutamine synthetase isozymes in Arabidopsis. J. Biol. Chem. 279:
16598–16605.
45. Jia, Z., Giehl, R. F. H., Hartmann, A., Estevez, J. M., Bennett, M. J., & von
Wiren, N. (2023). A spatially concerted epidermal auxin signaling framework
steers the root hair foraging response under low nitrogen. Current biology : CB,
33(18), 3926–3941.e5.
53
46. Juarez, S. P., Mangano, S., & Estevez, J. M. (2015). Improved ROS measurement
in root hair cells. Methods in molecular biology (Clifton, N.J.), 1242, 67–71.
47. Kadotani, N., Akagi, A., Takatsuji, H., Miwa, T., & Igarashi, D. (2016).
Exogenous proteinogenic amino acids induce systemic resistance in rice. BMC
plant biology, 16, 60.
48. Kan, C.C., Chung, Y.S., Juo, Y.A., Tsai, Y.J., and Liao, Y.J. (2017). Exogenous
glutamate rapidly induces the expression of genes involved in metabolism and
defense responses in rice roots. J. Plant Physiol. 215: 24–34.
49. Kent, W.J. (2002). BLAT—the BLAST-like alignment tool. Genome Res. 12:
656–664.
50. Klee, H.J., and Tieman, D.M. (2017). The tomato ethylene receptor family: form
and function in development and stress responses. Plant Cell 13: 1917–1931.
51. Konno, M., Ooishi, M., & Inoue, Y. (2003). Role of manganese in low-pH
induced root hair formation in Lactuca sativa cv. Grand Rapids seedlings. Journal
of plant research, 116(4), 301–307.
52. Kwon, T., Sparks, J. A., Liao, F., & Blancaflor, E. B. (2018). ERULUS Is a
Plasma Membrane-Localized Receptor-Like Kinase That Specifies Root Hair
Growth by Maintaining Tip-Focused Cytoplasmic Calcium Oscillations. The Plant
cell, 30(6), 1173–1177.
53. Labboun, S., Terce-Laforgue, T., Roscher, A., Bedu, M., Restivo, F. M., Velanis,
C. N., Skopelitis, D. S., Moschou, P. N., Roubelakis-Angelakis, K. A., Suzuki, A.,
& Hirel, B. (2009). Resolving the role of plant glutamate dehydrogenase. I. In
vivo real time nuclear magnetic resonance spectroscopy experiments. Plant & cell
physiology, 50(10), 1761–1773.
54
54. Lam, H. M., Chiu, J., Hsieh, M. H., Meisel, L., Oliveira, I. C., Shin, M., &
Coruzzi, G. (1998). Glutamate-receptor genes in plants. Nature, 396(6707), 125
126.
55. Lea, P. J., & Miflin, B. J. (1974). Alternative route for nitrogen assimilation in
higher plants. Nature, 251(5476), 614–616.
56. Lee KT, Liao HS, Hsieh MH. Glutamine metabolism, sensing, and signaling in
plants. Plant Cell Physiol. 2023:64(12):1466–1481.
57. Liao HS, Chung YH, Hsieh MH. Glutamate: a multifunctional amino acid in
plants. Plant Sci. 2022a:318:111238.
58. Liao HS, Yang CC, Hsieh MH* (2022) Nitrogen deficiency- and sucrose-induced
anthocyanin biosynthesis is modulated by HISTONE DEACETYLASE15 in
Arabidopsis. J Exp Bot 73: 3726-3742
59. Ludwig-Muller J. (2011). Auxin conjugates: their role for plant development and
in the evolution of land plants. Journal of experimental botany, 62(6), 1757–1773.
60. Martin, R. E., Marzol, E., Estevez, J. M., & Muday, G. K. (2022). Ethylene
signaling increases reactive oxygen species accumulation to drive root hair
initiation in Arabidopsis. Development (Cambridge, England), 149(13),
dev200487.
61. Masclaux-Daubresse, C., Reisdorf-Cren, M., Pageau, K., Lelandais, M.,
Grandjean, O., Kronenberger, J., Valadier, M. H., Feraud, M., Jouglet, T., &
Suzuki, A. (2006). Glutamine synthetase-glutamate synthase pathway and
glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in
tobacco. Plant physiology, 140(2), 444–456.
55
62. Masucci, J.D., and Schiefelbein, J.W. (1996). Hormones act downstream of TTG
and GL2 to promote root hair outgrowth during epidermis development in the
Arabidopsis root. Plant Cell 8: 1505–1517.
63. Michaeli, S., & Fromm, H. (2015). Closing the loop on the GABA shunt in plants:
are GABA metabolism and signaling entwined? Frontiers in plant science, 6, 419.
64. Michard, E., Lima, P. T., Borges, F., Silva, A. C., Portes, M. T., Carvalho, J. E.,
Gilliham, M., Liu, L. H., Obermeyer, G., & Feijo, J. A. (2011). Glutamate
receptor-like genes form Ca2+ channels in pollen tubes and are regulated by pistil
D-serine. Science (New York, N.Y.), 332(6028), 434–437.
65. Mittler, R., Zandalinas, S. I., Fichman, Y., & Van Breusegem, F. (2022). Reactive
oxygen species signalling in plant stress responses. Nature reviews. Molecular cell
biology, 23(10), 663–679.
66. Muthamilarasan, M., & Prasad, M. (2013). Plant innate immunity: an updated
insight into defense mechanism. Journal of biosciences, 38(2), 433–449.
67. Nadarajah K. K. (2020). ROS Homeostasis in Abiotic Stress Tolerance in Plants.
International journal of molecular sciences, 21(15), 5208.
68. Nemeth, E., Nagy, Z., & Pecsvaradi, A. (2018). Chloroplast Glutamine
Synthetase, the Key Regulator of Nitrogen Metabolism in Wheat, Performs Its
Role by Fine Regulation of Enzyme Activity via Negative Cooperativity of Its
Subunits. Frontiers in plant science, 9, 191.
69. Nemeth, E., Nagy, Z., & Pecsvaradi, A. (2018). Chloroplast Glutamine
Synthetase, the Key Regulator of Nitrogen Metabolism in Wheat, Performs Its
Role by Fine Regulation of Enzyme Activity via Negative Cooperativity of Its
Subunits. Frontiers in plant science, 9, 191.
56
70. Owen AG, Jonse DL. Competition for amino acids between wheat roots and
rhizosphere microorganisms and the role of amino acids in plant N acquisition.
Soil Biol Biochem. 2001:33(4–5):651–657.
71. Pecenkova, T., Hala, M., Kulich, I., Krenek, P., and ?arsky, V. (2017). Pathogen
induced root hair growth in Arabidopsis thaliana. Ann. Bot. 119: 779–792.
72. Pei, Z., Huang, Y., Ni, J., Liu, Y., & Yang, Q. (2024). For a Colorful Life: Recent
Advances in Anthocyanin Biosynthesis during Leaf Senescence. Biology, 13(5),
329.
73. Peng, Y., Yang, J., Li, X., & Zhang, Y. (2021). Salicylic Acid: Biosynthesis and
Signaling. Annual review of plant biology, 72, 761–791.
74. Qi, Z., Stephens, N. R., & Spalding, E. P. (2006). Calcium entry mediated by
GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant
physiology, 142(3), 963–971.
75. Rekhter, D., Ludke, D., Ding, Y., Feussner, K., Zienkiewicz, K., Lipka, V.,
Wiermer, M., Zhang, Y., & Feussner, I. (2019). Isochorismate-derived
biosynthesis of the plant stress hormone salicylic acid. Science (New York, N.Y.),
365(6452), 498–502.
76. Robinson D, Rorison IH. 1987. Root hairs and plant-growth at low nitrogen
availabilities. New Phytologist 107, 681–693.
77. Ruan, J., Zhou, Y., Zhou, M., Yan, J., Khurshid, M., Weng, W., Cheng, J., &
Zhang, K. (2019). Jasmonic Acid Signaling Pathway in Plants. International
journal of molecular sciences, 20(10), 2479.
78. Rubio-Wilhelmi, M.delM., Sanchez-Rodriguez, E., Rosales, M. A., Blasco, B.,
Rios, J. J., Romero, L., Blumwald, E., & Ruiz, J. M. (2011). Cytokinin-dependent
57
improvement in transgenic P(SARK)::IPT tobacco under nitrogen deficiency.
Journal of agricultural and food chemistry, 59(19), 10491–10495.
79. Schaller, A., and Weiler, E.W. (1997). Molecular cloning and characterization of
12-oxophytodienoate reductase from tomato: induction by wounding and substrate
specificity. Arch. Biochem. Biophys. 336: 201–207.
80. Shibata, M., Breuer, C., Kawamura, A., Clark, N. M., Rymen, B., Braidwood, L.,
Morohashi, K., Busch, W., Benfey, P. N., Sozzani, R., & Sugimoto, K. (2018).
GTL1 and DF1 regulate root hair growth through transcriptional repression of
ROOT HAIR DEFECTIVE 6-LIKE 4 in Arabidopsis. Development (Cambridge,
England), 145(3), dev159707.
81. Song, L., Yu, H., Dong, J., Che, X., Jiao, Y., & Liu, D. (2016). The Molecular
Mechanism of Ethylene-Mediated Root Hair Development Induced by Phosphate
Starvation. PLoS genetics, 12(7), e1006194.
82. Song, S., Huang, H., Gao, H., Wang, J., Wu, D., Liu, X., Yang, S., Zhai, Q., Li,
C., Qi, T., & Xie, D. (2014). Interaction between MYC2 and ETHYLENE
INSENSITIVE3 modulates antagonism between jasmonate and ethylene signaling
in Arabidopsis. The Plant cell, 26(1), 263–279.
83. Taira, M., Valtersson, U., Burkhardt, B., & Ludwig, R. A. (2004). Arabidopsis
thaliana GLN2-encoded glutamine synthetase is dual targeted to leaf mitochondria
and chloroplasts. The Plant cell, 16(8), 2048–2058.
84. Tam, Y. Y., Epstein, E., & Normanly, J. (2000). Characterization of auxin
conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate,
indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant physiology, 123(2),
589–596.
58
85. Tang, D., Wang, G., & Zhou, J. M. (2017). Receptor Kinases in Plant-Pathogen
Interactions: More Than Pattern Recognition. The Plant cell, 29(4), 618–637.
86. Tarkowski, ?. P., Signorelli, S., & Hofte, M. (2020). γ-Aminobutyric acid and
related amino acids in plant immune responses: Emerging mechanisms of action.
Plant, cell & environment, 43(5), 1103–1116.
87. Tseng CC, Lee CJ, Chung YT, Sung TY, Hsieh MH. Differential regulation of
Arabidopsis plastid gene expression and RNA editing in non- photosynthetic
tissues. Plant Mol Biol. 2013:82(4–5):375–392.
88. Vatter T, Neuhauser B, Stetter M, Ludewig U. 2015. Regulation of length and
density of Arabidopsis root hairs by ammonium and nitrate. Journal of Plant
Research 128, 839–848.
89. Verslues, P. E., & Sharma, S. (2010). Proline metabolism and its implications for
plant-environment interaction. The arabidopsis book, 8, e0140.
90. Vidal, E.A., Alvarez, J.M., Moyano, T.C., and Gutierrez, R.A. (2020). Nitrate
signaling and early responses in Arabidopsis roots. J. Exp. Bot. 71: 622–631.
91. Vissenberg, K., Claeijs, N., Balcerowicz, D., & Schoenaers, S. (2020). Hormonal
regulation of root hair growth and responses to the environment in Arabidopsis.
Journal of experimental botany, 71(8), 2412–2427.
92. Vissenberg, K., Claeijs, N., Balcerowicz, D., and Schoenaers, S. (2020).
Hormonal regulation of root hair growth and responses to the environment in
Arabidopsis. J. Exp. Bot. 71: 2412–2427.
93. Vlot, A.C., Dempsey, D.A., and Klessig, D.F. (2009). Salicylic acid, a
multifaceted hormone to combat disease. Annu. Rev. Phytopathol. 47: 177–206.
59
94. Wang, N.N., Shih, M.C., and Li, N. (2005). The GUS reporter-aided analysis of
the promoter activities of Arabidopsis ACC synthase genes AtACS4, AtACS5,
and AtACS7 induced by hormones and stresses. J. Exp. Bot. 56: 909–920.
95. Wang, P., Ji, S., & Grimm, B. (2022). Post-translational regulation of metabolic
checkpoints in plant tetrapyrrole biosynthesis. Journal of experimental botany,
73(14), 4624–4636.
96. Wasternack, C., and Song, S. (2017). Jasmonate signaling in plant stress responses
and development. Plant Cell 29: 153–170.
97. Winter, G., Todd, C. D., Trovato, M., Forlani, G., & Funck, D. (2015).
Physiological implications of arginine metabolism in plants. Frontiers in plant
science, 6, 534.
98. Xu, B., Long, Y., Feng, X., Zhu, X., Sai, N., Chirkova, L., Betts, A., Herrmann, J.,
Edwards, E. J., Okamoto, M., Hedrich, R., & Gilliham, M. (2021). GABA
signalling modulates stomatal opening to enhance plant water use efficiency and
drought resilience. Nature communications, 12(1), 1952.
99. Xue, C., Li, W., Shen, R., & Lan, P. (2021). PERK13 modulates phosphate
deficiency-induced root hair elongation in Arabidopsis. Plant science : an
international journal of experimental plant biology, 312, 111060.
100. Xue, N., Zhan, C., Song, J., Li, Y., Zhang, J., Qi, J., & Wu, J. (2022). The
glutamate receptor-like 3.3 and 3.6 mediate systemic resistance to insect
herbivores in Arabidopsis.
101. Yu, B., Liu, N., Tang, S., Qin, T., & Huang, J. (2022). Roles of Glutamate
Receptor-Like Channels (GLRs) in Plant Growth and Response to Environmental
Stimuli. Plants (Basel, Switzerland), 11(24), 3450.
60
102. Zaynab, M., Fatima, M., Abbas, S., Sharif, Y., Umair, M., Zafar, M. H., &
Bahadar, K. (2018). Role of secondary metabolites in plant defense against
pathogens. Microbial pathogenesis, 124, 198–202.
103. Zhang, L., Zhang, F., Melotto, M., Yao, J., & He, S. Y. (2017). Jasmonate
signaling and manipulation by pathogens and insects. Journal of experimental
botany, 68(6), 1371–1385.
104. Zhang, Q., Gong, M., Xu, X., Li, H., & Deng, W. (2022). Roles of Auxin in the
Growth, Development, and Stress Tolerance of Horticultural Plants. Cells, 11(17),
2761.
105. Zhao Y. (2010). Auxin biosynthesis and its role in plant development. Annual
review of plant biology, 61, 49–64. |