博碩士論文 111821025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.216.178.11
姓名 李姿慧(Tzu-Hui Li)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 人工合成型丹蔘化合物對人類前列腺癌細胞凋 亡及自噬的影響
(Effects of synthetic Danshen compounds on apoptosis and autophagy of prostate cancer cells)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-6以後開放)
摘要(中) 前列腺癌 (Prostate cancer) 是全世界男性中癌症中第二常見的癌症,儘管天然和合成丹參化合物(著名的用於治療心血管疾病的中藥)可以調節前列腺癌細胞的生長和轉移,但其具體作用機制仍不明確。透過使用合成型丹蔘化合物,如 ST32c、ST32da 和 ST32db,以及前列腺癌細胞,如 LNCap、DU-145 和 PC-3 作為研究材料,了解三種合成丹蔘化合物是否透過凋亡和自噬路徑來影響雄性素依賴型和非依賴型前列腺癌細胞生長。研究結果顯示,在凋亡途徑中,由切割型態 capase-9 和 caspase-3 的增加顯示,三種化合物都劑量依賴性的提高 LNCaP、DU145 和 PC-3 細胞中的 caspase-9 和 caspase-3 活性,有趣的是,ST32c 和 ST32db 普遍增加 LNCaP 和 DU-145 細胞中的 Bcl-2,且三種化合物都增加 LNCaP 和 DU-145 細胞中切割型態 PARP 的蛋白表現量。使用 caspase-3 抑制劑(如Z-VAD-FMK)處理 DU-145 細胞,可拮抗 ST32c、ST32da 和 ST32db 對 DU-145 細胞存活率的影響。在自噬路徑中,ST32c 劑量依賴性的增加 PC-3 細胞中的 Beclin-1、Atg5 和Atg7 蛋白的表現;然而 ST32da 在 100 μM 時顯著降低 LNCaP 和 DU-145 細胞中的 Atg3和 Atg7,但不降低 PC-3 細胞的表現,以及降低 DU-145 細胞中的 Beclin-1 和 Atg5 蛋白;ST32db 減少 LNCaP 細胞的 Atg3 和 Atg7 蛋白、DU-145 細胞的 Atg3 蛋白、PC-3 細胞的 Atg3、Atg4B 和 Atg7 蛋白;三種化合物都增加三種前列腺癌細胞中的 p62 和 pp62蛋白以及 PC-3 細胞的 LC3β-II 蛋白。總而言之,三種合成型丹蔘化合物的作用會隨著化學結構和劑量的不同來抑制不同類型的前線癌細胞的生長,這可能是透過調節不同的凋亡蛋白和/或透過改變特定得自噬蛋白表現而得。
摘要(英) Prostate cancer (PCa) is the second most commonly diagnosed cancer in men worldwide. Although the growth and metastasis of PCa cells can be regulated by native and synthetic
Danshen compounds (well-known traditional Chinese medicines for treating cardiovascular diseases), the exact mechanisms of their actions are still not clear. Through uses of synthetic Danshen compounds, such as St32c, St32da, and St32db, as well as PCa cell lines, such as LNCaP, DU-145 and PC-3, the present thesis was designed to investigate whether any of them affect the growth of androgen-dependent and androgen-independent PCa cells through modulations of apoptosis and autophagy pathways. In the apoptotic pathway, the three compounds all dose-dependently increased the activity of caspase-9 and caspase-3 in LNCaP, DU-145, and PC-3 cells, as evidenced by increased cleaved forms of caspase-3 and caspase-9 proteins. Interestingly, St32c and St32db generally increased the activity of Bcl-2 in LNCaP
and DU-145, and all three compounds enhanced the cleaved PARP protein levels in LNCaP and DU-145. Treatment of DU-145 cells with a caspase-3 inhibitor (e.g., Z-VAD-FMK) generally antagonized the effect of ST32c, ST32da and ST32db on cell viability. In the autophagy process, St32c tended to increase levels of Beclin-1, Atg5, and Atg7 proteins in all
PCa cell types with dose dependency. Whereas, St32da at 100 μM significantly decreased Atg3 and Atg7 in LNCaP and DU-145 but not PC-3 cells, as well as decreasing Beclin-1 and Atg5
proteins in DU-145 cells. St32db tended to decrease Atg3 and Atg7 proteins in LNCaP, Atg3 protein in DU-145, and Atg3, Atg4B, and Atg7 in PC-3 cells. However, all compounds
increased p62 and pp62 proteins in the three PCa cells and LC3β-II protein in PC-3 cells. In conclusions, the synthetic Danshen compounds vary with chemical structure and the dosage of treatment to inhibit the growth of different types of PCa cells possibly through modulations of varying apoptotic proteins and/or through alterations of particular autophagy protein levels
關鍵字(中) ★ 前列腺癌
★ 人工合成丹蔘化合物
★ 細胞凋亡
★ 細胞自噬
關鍵字(英) ★ Prostate cancer
★ Synthetic Danshen compounds
★ Apoptosis
★ Autophagy
論文目次 中文摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
英文縮寫對照表 X
一、 緒論 1
1-1 前列腺癌 1
1-1-1 前列腺構造及功能 1
1-1-2 排名 1
1-1-3 診斷方式、症狀及治療方式 1
1-1-4 前列腺癌細胞種類 2
1-2 藥物 3
1-2-1 天然丹蔘化合物 (Tanshinone) 3
1-2-2 人工合成丹蔘化合物 (Synthetic Danshen compounds) 3
1-2-3 歐洲紫杉醇 (Doceetaxel) 4
1-3 前列腺癌之調節與訊息傳導 5
1-3-1 細胞凋亡 (Apoptosis) 5
1-3-2 細胞自噬 (Autophagy) 6
1-4 實驗動機與目的 7
二、 材料與方法 8
2-1 實驗材料 8
2-2 細胞培養 (Cell culture) 8
2-3 冷凍細胞保存(Freeze cell) 9
2-4 解凍細胞 (Unfreeze cell) 10
2-5 西方墨點法 (Western blot) 10
2-5-1 樣品收集 10
2-5-2 蛋白質萃取 10
2-5-3 蛋白質定量及樣品配置 10
2-5-4 12% SDS-PAGE 電泳膠製作 11
2-5-5 SDS-polyacryamide 膠體電泳 11
2-5-6 轉漬 (Transfer) 11
2-5-7 封閉 (Blocking) 及一級抗體 (Primary antibody) 辨識 11
2-5-8 抗體脫離 (Stripping) 12
2-5-9 量化分析 12
2-6 抑制劑預處理 12
2-7 細胞存活率分析 (MTT assay) 13
2-8 統計分析 (Statistical analysis) 13
三、 結果 14
四、 討論 23
五、 結論 26
六、 參考文獻 27
七、 附錄 65
參考文獻 1. Ruben D. Motrich, et al., Implications of prostate inflammation on male fertility. Andrologia, 2018. 50(11): p. e13093.
2. Freddie Bray, et al., Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2024. 74(3): p. 229-263.
3. 國民健康署. 2023; Available from: https://www.mohw.gov.tw/cp-16-76564-1.html.
4. Ferlay, J., D.M. Parkin, and E. Steliarova-Foucher, Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer, 2010. 46(4): p. 765-81.
5. Ramogomo Frans Matshela , Johanna E Maree and Corrien van Belkum, Prevention and detection of prostate cancer: a pilot intervention in a resource--poor South African community. Cancer Nurs, 2014. 37(3): p. 189-97.
6. Mohan Adhyam and Anish Kumar Gupta, A Review on the Clinical Utility of PSA in Cancer Prostate. Indian J Surg Oncol, 2012. 3(2): p. 120-129.
7. Christian Bach, et al., The status of surgery in the management of high-risk prostate cancer. Nat Rev Urol, 2014. 11(6): p. 342-351.
8. Jiajia Chen, et al., Translational bioinformatics for diagnostic and prognostic prediction of prostate cancer in the next-generation sequencing era. Biomed Res Int, 2013. 7: p. 901578.
9. Mamello Sekhoacha, et al., Prostate Cancer Review: Genetics, Diagnosis, Treatment Options, and Alternative Approaches. Molecules, 2022. 27(17): p. 5730.
10. Deborah Termini, et al., Curcumin against Prostate Cancer: Current Evidence. Biomolecules, 2020. 10(11): p. 1536.
11. Diping Wang and Donald J Tindall, Androgen Action During Prostate Carcinogenesis. 2011. 776: p. 25-44.
12. Takeshi Namekawa, et al., Application of Prostate Cancer Models for Preclinical Study: Advantages and Limitations of Cell Lines, Patient-Derived Xenografts, and Three-Dimensional Culture of Patient-Derived Cells. Cells, 2019. 8(1): p. 74.
13. Fatouma Alimirah, et al., DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett, 2006. 580(9): p. 2294-2300.
14. M E Kaighn, et al., Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol, 1979. 17(1): p. 16-23.
15. D D Mickey, et al., Heterotransplantation of a human prostatic adenocarcinoma cell line in nude mice. Cancer Res, 1977. 37(11): p. 4049-4058.
16. Zhencheng Lai, Tanshinones: An Update in the Medicinal Chemistry in Recent 5 Years. Curr Med Chem, 2021. 28(14): p. 2807-2827.
17. Ching-Yuan Wu, et al., Anti-cancer effect of danshen and dihydroisotanshinone I on prostate cancer: targeting the crosstalk between macrophages and cancer cells via inhibition of the STAT3/CCL2 signaling pathway. Oncotarget, 2017. 8(25): p. 40246-40263.
18. Wei Li, et al., Molecular Mechanism of Tanshinone against Prostate Cancer. Molecules, 2022. 27(17): p. 5594.
19. Ching-Feng Cheng, et al., Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3. Communications Biology, 2019. 2(1): p. 389.
20. Hui-Chen Ku, et al., The ATF3 inducer protects against diet-induced obesity via suppressing adipocyte adipogenesis and promoting lipolysis and browning. Biomed Pharmacother, 2022. 145: p. 112440.
21. K J Pienta, Preclinical mechanisms of action of docetaxel and docetaxel combinations in prostate cancer. Seminars in Oncology, 2001. 28: p. 3-7.
22. Yaron Fuchs and Hermann Steller, Programmed cell death in animal development and disease. Cell, 2011. 147(4): p. 742-58.
23. G Hacker, The morphology of apoptosis. Cell Tissue Res, 2000. 301(1): p. 5-17.
24. A Saraste and K Pulkki, Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res, 2000. 45(3): p. 528-37.
25. Susan Elmore, Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
26. Peter E Lonergan and Donald J Tindall, Androgen receptor signaling in prostate cancer development and progression. J Carcinog, 2011. 10: p. 20.
27. Ju-Ha Kim, et al., Implications of Bcl-2 and its interplay with other molecules and signaling pathways in prostate cancer progression. Expert Opinion on Therapeutic Targets, 2017. 21(9): p. 911-920.
28. H Perlman, et al., An elevated bax/bcl-2 ratio corresponds with the onset of prostate epithelial cell apoptosis. Cell Death Differ, 1999. 6(1): p. 48-54.
29. Tateki Yoshino, et al., Bcl-2 Expression as a Predictive Marker of Hormone-Refractory Prostate Cancer Treated with Taxane-Based Chemotherapy. Clinical Cancer Research, 2006. 12(20): p. 6116-6124.
30. M Krajewska, et al., Immunohistochemical analysis of bcl-2, bax, bcl-X, and mcl-1 expression in prostate cancers. Am J Pathol, 1996. 148(5): p. 1567-76.
31. Amaal Ali and George Kulik, Signaling Pathways That Control Apoptosis in Prostate Cancer. Cancers (Basel), 2021. 13(5): p. 937.
32. Minggang Zhu, et al., Caspase-Linked Programmed Cell Death in Prostate Cancer: From Apoptosis, Necroptosis, and Pyroptosis to PANoptosis. Biomolecules, 2023. 13(12): p. 1715.
33. Robert R Zielinski, Bernhard J Eigl and Kim N Chi, Targeting the Apoptosis Pathway in Prostate Cancer. The Cancer Journal, 2013. 19(1): p. 79-89.
34. Danielle Glick , Sandra Barth and Kay F Macleod, Macleod, Autophagy: cellular and molecular mechanisms. J Pathol, 2010. 221(1): p. 3-12.
35. Pilar Sarah Acevo-Rodriguez , et al., Autophagy Regulation by the Translation Machinery and Its Implications in Cancer. Front Oncol, 2020. 10: p. 322.
36. Niklas Gremke, et al., mTOR-mediated cancer drug resistance suppresses autophagy and generates a druggable metabolic vulnerability. Nat Commun, 2020. 11(1): p. 4684.
37. Mohd Ishaq, et al., Autophagy in cancer: Recent advances and future directions. Semin Cancer Biol, 2020. 66: p. 171-181.
38. Sibi Raj, et al., Molecular mechanisms of interplay between autophagy and metabolism in cancer. Life Sci, 2020. 259: p. 118184.
39. Xin Wen and Daniel J. Klionsky, At a glance: A history of autophagy and cancer. Semin Cancer Biol, 2020. 66: p. 3-11.
40. Hui-Min Zhang, et al., MKL1/miR-5100/CAAP1 loop regulates autophagy and apoptosis in gastric cancer cells. Neoplasia, 2020. 22(5): p. 220-230.
41. Fanhua Kong, et al., Downregulation of METTL14 increases apoptosis and autophagy induced by cisplatin in pancreatic cancer cells. The International Journal of Biochemistry & Cell Biology, 2020. 122: p. 105731.
42. Yu Geon Lee, et al., Androgen-induced expression of DRP1 regulates mitochondrial metabolic reprogramming in prostate cancer. Cancer Lett, 2020. 471: p. 72-87.
43. Ian A. Cree, Principles of Cancer Cell Culture, in Cancer Cell Culture: Methods and Protocols, Methods in Molecular Biology, 2011. 731:p. 13-26.
44. Gemma L. Kelly, and Andreas Strasser, Toward Targeting Antiapoptotic MCL-1 for Cancer Therapy. Annual Review of Cancer Biology, 2020. 4: p. 299-313.
45. J. Marie Hardwick and Lucian Soane, Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol, 2013. 5(2).
46. Keisuke Kuida, Caspase-9. Int J Biochem Cell Biol, 2000. 32(2): p. 121-124.
47. P Li, et al., Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell, 1997. 91(4): p. 479-89.
48. E S Alnemri, et al., Human ICE/CED-3 protease nomenclature. Cell, 1996. 87(2): p. 171.
49. Jean-Philippe Gagne, et al., Proteomic investigation of phosphorylation sites in poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase. J Proteome Res, 2009. 8(2): p. 1014-1029.
50. Sharon Tran, W.D. Fairlie, and E.F. Lee, BECLIN1: Protein Structure, Function and Regulation. Cells, 2021. 10(6): p. 1522.
51. Sebastian Wesselborg and Bjorn Stork, Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci, 2015. 72(24): p. 4721-4757.
52. Xiaohua Li, Shikun He, Binyun Ma, Autophagy and autophagy-related proteins in cancer. Molecular Cancer, 2020. 19(1): p. 12.
53. Wei Jing Liu, et al., p62 links the autophagy pathway and the ubiqutin–proteasome system upon ubiquitinated protein degradation. Cellular & Molecular Biology Letters, 2016. 21(1): p. 29.
54. Isei Tanida, Takashi Ueno and Eiki Kominami, LC3 and Autophagy. Methods Mol Biol, 2008. 445: p. 77-88.
55. Azhar Rasul, et al., Reactive oxygen species mediate isoalantolactone-induced apoptosis in human prostate cancer cells. Molecules, 2013. 18(8): p. 9382-9396.
56. Rebecca S Y Wong, Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res, 2011. 30(1): p. 87.
57. Xuebo Xu, Yueyang Lai, Zi-Chun Hua, Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep, 2019. 39(1).
58. Dongdong Sun, et al., Trifolirhizin induces autophagy-dependent apoptosis in colon cancer via AMPK/mTOR signaling. Signal Transduction and Targeted Therapy, 2020. 5(1): p. 174.
59. Malene Hansen, David C Rubinsztein, David W Walker , Autophagy as a promoter of longevity: insights from model organisms. Nature Reviews Molecular Cell Biology, 2018. 19(9): p. 579-593.
60. Ke Peng, et al., Restoration of the ATG5?dependent autophagy sensitizes DU145 prostate cancer cells to chemotherapeutic drugs. Oncology Letters, 2021. 22(3): p. 638.
61. Alicia M. Blessing, et al., Transcriptional regulation of core autophagy and lysosomal genes by the androgen receptor promotes prostate cancer progression. Autophagy, 2017. 13(3): p. 506-521.
62. Petros X E Mouratidis, et al., Differential role of apoptosis and autophagy associated with anticancer effect of lupulone (hop β-acid) derivatives on prostate cancer cells. Anticancer Agents Med Chem, 2014. 14(8): p. 1169-1178.
63. Anna Dubrovska, et al., The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proceedings of the National Academy of Sciences, 2009. 106(1): p. 268-273.
?
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2025-1-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明