博碩士論文 111852014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:18.191.31.59
姓名 陳依茹(Yi-Ru Chen)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 雪花狀銀納米顆粒與氧化石墨烯共修飾於紙纖維上的合成及其作為表面增強拉曼散射基材的應用
(Synthesis of Snowflake-like Silver Nanoparticles and Graphene Oxide Co-decorated on Paper-Fiber for Surface-Enhanced Raman Scattering Substrate)
相關論文
★ 具生物沾粘性免疫奈米磁珠之電化學平台於急性冠心病標誌物檢測★ 離子液體應用於脂溶性蛋白之快速萃取及檢測
★ 深度學習計算成像系統於生物醫學顯微影像之重建與分析★ 磁電化學免疫分析系統 於新型冠狀病毒感染檢測之研製
★ 計算照明高通量生物醫學成像顯微鏡系統★ 表面增強拉曼散射探針及微流道系統 用於癌症細胞及外泌體表面生物標記物的多重檢測
★ 透過深度學習神經網路進行無透鏡數位全像顯微系統之影像重建與相位恢復★ 通過多醣表面修飾增強隱形眼鏡的親水性和抗菌性能
★ 菲涅耳數位全像顯微系統於全血細胞分析之研製★ 遮罩區域卷積類神經網路於醫學影像物件偵測分析應用
★ 基於深度學習之高通量顯微影像系統於血液分析★ 可功能化編碼之表面增強拉曼光譜標籤探針於高靈敏與多重生醫分子檢測
★ 高通量計算顯微影像系統之研製於生物醫學成像與分析★ 微滴式數位無?等溫擴增方法於乳癌小分子核糖核酸之偵測
★ 功能性抗生物沾黏單層膜於冠狀動脈心血管疾病標誌物之檢測應用★ 鼻咽癌外泌小體藉由EB病毒潛伏膜蛋白1促進巨噬細胞免疫抑制型分化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 表面增強拉曼散射(Surface-enhanced Raman scattering, SERS)技術作為通過在單分子水平上收集分子光譜信號來識別分子物種一種強而有力的工具,在環境科學、醫學診斷、食品安全以及生物分析等多個領域均取得了重要的研究進展。SERS 技術不僅具有無損檢測樣本、高靈敏度和高選擇性的優勢,同時在分子結構表徵、濃度定量和多物種分析方面展現出廣闊的前瞻性。隨著相關研究逐步深入,越來越多高性能或多功能的 SERS 基底材料被開發出來,這些材料包含但不限於金屬納米結構、金屬-半導體複合材料以及其他新型複合基底,這不僅大幅提升了 SERS 感測的靈敏度和穩定性,也有助於擴展其應用範圍,將其推向更具挑戰性的研究領域。特別是在生物分析領域,SERS 技術已逐漸成為分子檢測和生物標誌物識別的重要手段,能夠在超低濃度條件下實現對蛋白質、核酸、生物大分子等複雜體系的痕量分析,對疾病的早期診斷、癌症標誌物的檢測以及藥物代謝過程的監測等提供了高效而精準的應用潛力 [1]。
在本篇研究中,採用銀奈米粒子並利用多元醇法(Polyol Method)合成的雪花狀銀奈米顆粒(Snowflake-like Silver Nanoparticles, AgNS)與氧化石墨烯(Graphene Oxide, GO)共修飾於濾紙上作為表面增強拉曼(Surface Enhanced Raman Scattering, SERS)基材,以最大限度地減少奈米銀的團聚之外,其複合材料也表現出其他性能,例如對微量重金屬離子的良好光學敏感性、吸附親和力以及去除有機化合物的催化活性。實驗結果顯示,本方法相比僅有銀奈米粒子的基材,其增強因子(Enhancement Factor, EF)提升約1.2×10?倍,展現更強的訊號增強效果。本研究證實了此低成本、高靈敏度的複合基材具有應用於小樣本體積高效分析的潛力,為表面增強拉曼技術的改進與發展提供了重要的實驗基礎。
摘要(英) Surface-enhanced Raman scattering (SERS) technology is a powerful tool for identifying molecular species by collecting spectral signals from individual molecules. It has made significant advancements in various fields, such as environmental science, medical diagnostics, food safety, and bioanalysis. SERS offers benefits including non-destructive detection, high sensitivity, and high selectivity, and it shows great potential for applications in molecular structure characterization, concentration quantification, and multi-species analysis. As research in this area progresses, a growing number of high-performance and multifunctional SERS substrate materials have been developed. These materials include metallic nanostructures, metal-semiconductor composites, and various other novel composite substrates. These advancements have greatly improved the sensitivity and stability of SERS sensing, while also expanding its range of applications, particularly in more challenging research areas. In bioanalysis, SERS technology has become an essential method for molecular detection and biomarker identification. It allows for trace analysis of complex systems, including proteins, nucleic acids, and biomacromolecules, even at ultra-low concentrations. This capability offers promising applications for early disease diagnosis, cancer biomarker detection, and monitoring drug metabolism processes [1] .
In this study, silver nanoparticles synthesized using the polyol method were fabricated into Snowflake-like Silver Nanoparticles (AgNS) and combined with Graphene Oxide (GO) on filter paper as a substrate for surface-enhanced Raman scattering (SERS). This approach minimizes the agglomeration of silver nanoparticles and endows the composite material with additional properties, such as high optical sensitivity to trace heavy metal ions, adsorption affinity, and catalytic activity to remove organic compounds. Raman analysis results show that the newly developed GO and AgNS composite substrate exhibits a stronger signal enhancement effect than substrates with silver nanoparticles alone, achieving an Enhancement Factor (EF) of 1.2 × 10?. By employing the SERS technique combined with a low-cost, highly sensitive substrate, small sample volumes were analyzed efficiently, confirming the applicability of snowflake-like silver nanoparticles and graphene oxide in surface-enhanced Raman applications.
關鍵字(中) ★ 拉曼散射
★ 奈米粒子
★ 石墨烯
★ 表面增強拉曼基材
關鍵字(英) ★ Raman
★ Nanoparticles
★ Graphene
★ SERS substrate
論文目次 中文摘要 i
Abstract ii
一、 緒論 1
1.1 研究背景 1
1.2 研究動機 4
1.2.1 表面增強拉曼之電磁效應 5
1.2.2 表面增強拉曼之化學效應 7
1.3 石墨烯 8
1.3.1 石墨烯結構與性質 8
1.3.2 石墨烯的製備方法 11
1.3.2.1 機械剝離法 11
1.3.2.2 化學氣相沉積法 12
1.3.2.3 氧化石墨烯還原法 13
1.3.3 氧化石墨烯應用 14
1.4 金屬奈米粒子制備 17
1.4.1 水熱法製備 18
1.4.2 光化學法 19
1.4.3 晶核成長法 20
1.4.4 多元醇法 22
二、 研究方法與材料 26
2.1 研究材料與儀器 26
2.1.1 藥品 26
2.1.2 儀器 26
2.2 研究方法 27
2.2.1 AgNS製備方法 27
2.2.2 製備氧化石墨烯溶液 28
2.2.3 配置膠體-氧化石墨烯懸浮液 28
2.2.4 製備濾紙 29
三、 結果 30
3.1 AgNS紫外光譜量測探討 30
3.2 AgNS穿透式電子顯微鏡量測 31
3.3 AgNS拉曼訊號量測 35
3.4 GO@AgNS拉曼訊號量測 36
四、 結論 38
五、 參考文獻 39
參考文獻 C. Lin, Y. Li, Y. Peng, S. Zhao, M. Xu, L. Zhang, Z. Huang, . J. Shi and Y. Yang, "Recent development of surface-enhanced Raman scattering for biosensing. ," Journal of nanobiotechnology, vol. 21, p. 149, May 2023.
R. Jukka A, P. Kai-Erik and A. Tosh, "Definitions of Optical Instrumentation and Measurement," in Springer-Verlag Berlin Heidelberg, New York, Springer-Verlag Berlin Heidelberg GmbH, 2004, pp. 86-97.
C. C. Moura, R. S. Tare, R. O. C. Oreffo and S. Mahajan, "Raman spectroscopy and coherent antiStokes Raman scattering imaging:," Journal of the Royal Society interface, vol. 13, May 2016.
R. M. Hart, J. G. Bergman and A. Wokaun, "Surface-enhanced Raman scattering from silver particles on polymer-replica substrates," Optics Letters, vol. 7, pp. 105-107, Mar. 1982.
J. Turkevich and G. Kim, "Palladium: preparation and catalytic properties of particles of uniform size," Science, vol. 169, pp. 873-879, Aug. 1970.
K. A. Willets and R. P. Van Duyne, "Localized surface plasmon resonance spectroscopy and sensing," Annu. Rev. Phys. Chem., vol. 58, pp. 267-297, Jan. 2007.
P. G. Etchegoin and E. C. Le Ru, "A perspective on single molecule SERS: current status and future," Physical chemistry chemical physics : PCCP, vol. 10, pp. 6079-6089, Jan. 2008.
K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld, "Surface-enhanced Raman scattering and biophysics," J. Phys.: Condens. Matter, vol. 14, pp. 597-624, Apr. 2002.
H. Lai, F. Xu, Y. Zhang and L. Wang, "Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications," J. Mater. Chem. B, vol. 6, pp. 4008-4028, May. 2018.
X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang and Z. Liu, "Can Graphene be used as a Substrate for Raman Enhancement?," Nano Lett., vol. 10, pp. 553-561, Dec. 2009.
D. T. Nurrohman and N.-F. Chiu, "A Review of Graphene-Based Surface Plasmon Resonance and Surface-Enhanced Raman Scattering Biosensors: Current Status and Future Prospects," Nanomaterials, vol. 11, p. 216, Jan. 2021.
Y. Zhu, . S. Murali, W. Cai, X. Li, . J. W. Suk, J. R. Potts and . R. . S. Ruoff, "Graphene and Graphene Oxide: Synthesis, Properties, and Applications," Advanced Materials, vol. 22, pp. 3906-3924, Sep. 2010.
G. Ruess and V. F, "Hochstlamellarer Kohlenstoff aus Graphit-oxyhydroxyd," Monatshefte fur Chemie, vol. 78, pp. 222-242, May 1948.
E. P. Randviir, D. A. Brownson and C. E. Banks, "A decade of graphene research: production, applications and outlook," Materials today, vol. 17, pp. 426-432, Nov. 2014.
K. S. Novoselov, A. K. Geim, S. V. Morozov, . D. Jiang and Y. Zhang, "Electric field effect in atomically thin carbon films," SCIENCE, vol. 306, pp. 666-669, Oct. 2004.
Y. Min and S. Zhigang, "A review on mechanical exfoliation for the scalable production of graphene," Journal of materials chemistry, vol. 3, pp. 117-11715, Jan 2015.
Y. ZHANG, L. ZHANG and C. ZHOU, "Review of Chemical Vapor Deposition of Graphene and Related Applications," Accounts of Chemical Research, vol. 46, pp. 2329-2339, Mar. 2013.
. W. S. Hummers and R. E. . E. Offeman, "Preparation of Graphitic Oxide," Journal of the American Chemical Society, vol. 80, pp. 1339-1339, Mar. 1958.
G. Zhang, S. Sun, D. Yang, J.-P. Dodelet and E. Sacher, "The surface analytical characterization of carbon fibers functionalized by H2SO4/HNO3 treatment," Carbon, vol. 46, p. 196, Feb. 2008.
C. Liang, W. Xia, H. Soltani-Ahmadi, O. Schluter, R. A. Fischer and M. Muhler, "The two-step chemical vapor deposition of Pd(allyl)Cp as an atomefficient route to synthesize highly dispersed palladium nanoparticles on," Chemical communications, vol. 2, pp. 282-284, Jan. 2005.
C.-H. Tseng, C.-C. Wang and C.-Y. Chen, "Functionalizing Carbon Nanotubes by Plasma Modification for the Preparation of Covalent-Integrated Epoxy Composites," Chem. Mater., vol. 19, pp. 308-315, Dec. 2006.
L. Li, G. Wu and . B.-Q. Xu, "Electro-catalytic oxidation of CO on Pt catalyst supported on carbon nanotubes pretreated with oxidative acids," Carbon, vol. 44, p. 2973, Nov. 2006.
X. Yu, H. Cai and W. Zhang, "Tuning Chemical Enhancement of SERS by Controlling the Chemical Reduction of Graphene Oxide Nanosheets," ACS Nano, vol. 5, pp. 952-958, Jan. 2011.
R. Muszynski, B. Seger and . P. V. Kamat, "Decorating Graphene Sheets with Gold Nanoparticles," physical chemistry. C, vol. 112, pp. 5263-5266, Mar. 2008.
G. Goncalves, P. A. A. P. Marques, C. M. Granadeiro, H. I. S. Nogueira and M. K. Singh, "Surface Modification of Graphene Nanosheets with Gold Nanoparticles: The Role of Oxygen Moieties at Graphene Surface on Gold Nucleation and Growth," Chem. Mater, vol. 21, pp. 4796-4802, Sep. 2009.
S. Huh, J. Park, Y. S. Kim, K. S. Kim, B. H. Hong and . J.-M. Nam, "UV/Ozone-Oxidized Large-Scale Graphene Platform with Large Chemical Enhancement in Surface-Enhanced Raman Scattering," ACS Nano, vol. 5, p. 9799–9806, Nov. 2011.
Z. Li and X. Huang, "Single-crystalline ZnO nanowires on zinc substrate by a simple hydrothermal synthesis method," Materials Letters, vol. 62, pp. 2507-2511, Jun. 2008.
F. Kim, J. H. Song and P. Yang, "Photochemical Synthesis of Gold Nanorods," J. Am. Chem. Soc., vol. 124, pp. 14316-14317, Nov. 2002.
L. Zhang, Y. Wang, L. Tong and . Y. Xia, "Seed-Mediated Synthesis of Silver Nanocrystals with Controlled Sizes and Shapes in Droplet Microreactors Separated by Air," Langmuir, vol. 29, pp. 15719-15725, Nov. 2013.
J. Liu, F. He, T. M. Gunn and D. Zhao, "Precise Seed-Mediated Growth and Size-Controlled Synthesis of Palladium Nanoparticles Using a Green Chemistry Approach," Langmuir, vol. 25, pp. 7116-7128, Mar. 2009.
S. Yugang and X. Y, "Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process," Adv. Mater., vol. 14, pp. 833-837, Jun. 2002.
Y. Sun, B. Mayers and Y. Xia, "Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process," Nano Letters, vol. 5, pp. 675-679, Apr. 2003.
Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science, vol. 298, pp. 2176-2179, Dec. 2002.
Y. Sun, Y. Yin, B. . T. Mayers, T. Herricks and Y. Xia, "Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone)," Chem. Mater., vol. 14, pp. 4736-4745, Oct. 2002.
N. Leopold and B. Lendl, "A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS)," J. Phys. Chem. B, vol. 107, pp. 5723-5727, May 2003.
A. Garcia-Leis, I. Rivera-Arreba and S. Sanchez-Cortes, "Morphological tuning of plasmonic silver nanostars by controlling the," Colloids and Surfaces A, vol. 535, pp. 49-60, Sep. 2017.
A. Garcia-Leis, J. V. Garcia-Ramos and S. Sanchez-Cortes, "Silver Nanostars with High SERS Performance," J. Phys. Chem. C, vol. 117, pp. 7791-7795, 26 Mar. 2013.
N. Zhaoa, X. Feia, . X. Chengb and J. Yan, "Synthesis of silver/silver chloride/graphene oxide composite," Mater. Sci. Eng, vol. 242, 2017.
P. Hildebrandt and . M. Stockburger , "Surface-Enhanced Resonance Raman Spectroscopy of Rhodamine 6G Adsorbed on Colloidal Silver," Journal of physical chemistry, vol. 88, pp. 5935-5944, May 1984.
H. X N, Y. Gao and M. Mahjouri-Samani, "Surface-enhanced Raman spectroscopy using gold-coated horizontally aligned carbon nanotubes," Nanotechnology, vol. 23, pp. 205702-205702, Apr. 2012.
指導教授 黃貞翰(Chen-Han Huang) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明