參考文獻 |
1. Gallacher, K., et al., Silicon nitride waveguide polarization rotator and polarization beam splitter for chip-scale atomic systems. APL Photonics, 2022. 7(4).
2. Crossley, W.A., et al., Faraday Rotation in Rare-Earth Iron Garnets. Physical Review, 1969. 181(2): p. 896-904.
3. Hameed, M.F.O., F.F.K. Hussain, and S.S.A. Obayya, Ultracompact Polarization Rotator Based on Liquid Crystal Channel on Silicon. Journal of Lightwave Technology, 2017. 35(11): p. 2190-2199.
4. Lu, Y.-Q., et al., Electro-optic effect of periodically poled optical superlattice LiNbO3 and its applications. Applied Physics Letters, 2000. 77(23): p. 3719-3721.
5. Chen, C.-C., Design of ultra-short polarization convertor with enhanced birefringence by photonic crystals. Results in Physics, 2021. 24: p. 104138.
6. Liu, L.-Y., et al., Design of Reflective Polarization Rotator in Silicon Waveguide. 2022. 12(20): p. 3694.
7. Karki, D., et al., Thin-film magnetless Faraday rotators for compact heterogeneous integrated optical isolators. Journal of Applied Physics, 2017. 121(23).
8. Deng, C., et al., Broadband Polarization Splitter-Rotator on Lithium Niobate-on-Insulator Platform. IEEE Photonics Technology Letters, 2023. 35(1): p. 7-10.
9. Wang, Z. and D. Dai, Ultrasmall Si-nanowire-based polarization rotator. Journal of the Optical Society of America B, 2008. 25(5): p. 747-753.
10. Huan, Z., et al., Realization of a compact and single-mode optical passive polarization converter. IEEE Photonics Technology Letters, 2000. 12(3): p. 317-319.
11. Chen, G., et al., Ultra-short Silicon-On-Insulator (SOI) polarization rotator between a slot and a strip waveguide based on a nonlinear raised cosine flat-tip taper. Optics Express, 2013. 21(12): p. 14888-14894.
12. Zhou, H., et al., Ultra-compact and broadband Si photonics polarization rotator by self-alignment process. Optics Express, 2015. 23(5): p. 6815-6821.
13. Weis, R.S. and T.K. Gaylord, Lithium niobate: Summary of physical properties and crystal structure. Applied Physics A, 1985. 37(4): p. 191-203.
14. Chen, Z., et al., Broadband adiabatic polarization rotator-splitter based on a lithium niobate on insulator platform. Photonics Research, 2021. 9(12): p. 2319-2324.
15. Luo, H., et al., High-Performance Polarization Splitter-Rotator Based on Lithium Niobate-on-Insulator Platform. IEEE Photonics Technology Letters, 2021. 33(24): p. 1423-1426.
16. Andrushchak, A.S., et al., Spatial anisotropy of the acousto-optical efficiency in lithium niobate crystals. Journal of Applied Physics, 2010. 108(10).
17. Kane, Y., Numerical solution of initial boundary value problems involving maxwell′s equations in isotropic media. IEEE Transactions on Antennas and Propagation, 1966. 14(3): p. 302-307.
18. Finite-Difference Time-Domain Method, in Introduction to Optical Waveguide Analysis. 2001. p. 233-249.
19. Chen, W.-K., The electrical engineering handbook. 2005, Boston: Elsevier Academic Press.
20. Berenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 1994. 114(2): p. 185-200.
21. Hsiao, F.L., et al., Design of Waveguide Polarization Convertor Based on Asymmetric 1D Photonic Crystals. Nanomaterials (Basel), 2022. 12(14).
22. Okamoto, K., Chapter 3 - Optical fibers, in Fundamentals of Optical Waveguides (Second Edition), K. Okamoto, Editor. 2006, Academic Press: Burlington. p. 57-158.
23. Okamoto, K., Chapter 4 - Coupled mode theory, in Fundamentals of Optical Waveguides (Second Edition), K. Okamoto, Editor. 2006, Academic Press: Burlington. p. 159-207.
24. Yariv, A., Coupled-mode theory for guided-wave optics. IEEE Journal of Quantum Electronics, 1973. 9(9): p. 919-933.
25. Huang, W.P. and C.L. Xu, Simulation of three-dimensional optical waveguides by a full-vector beam propagation method. IEEE Journal of Quantum Electronics, 1993. 29(10): p. 2639-2649.
26. Yariv, A. and P. Yeh, Optical waves in crystals : propagation and control of laser radiation. Wiley classics library ed ed. Wiley classics library. 2003, Hoboken, NJ: Wiley.
27. Alferness, R.C. and T. Tamir, Guided-wave optoelectronics / Theodor Tamir (ed.) ; with contributions by R.C. Alferness ... [et al.]. 2nd ed ed. Springer series in electronics and photonics ; v. 26. 1990, Berlin ;: Springer-Verlag. |