博碩士論文 111226053 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.144.87.133
姓名 徐浚宸(Hsu, Chun-Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 基於平面參考波的子孔徑拼接干涉術於球面檢測的應用
(Application of Sub-aperture Stitching Interferometry Based on Plane Reference Wave in Spherical Surface Testing)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 透鏡品質檢測基於四波橫向剪切干涉儀
★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-11-30以後開放)
摘要(中) 干涉儀在光學元件測量扮演著不可或缺的角色,其在檢測表面平整度中
功不可沒。現今許多大型光學元件應用於國防、天文等行業,子孔徑干涉術
儼然成為未來趨勢。若檢測技術能夠提升,在光學元件製作工藝上就能繪出
嶄新的篇章。
相較於以往使用球面標準鏡進行曲面量測,在本研究中,將會提出了全
新的量測方法,既是以平面標準鏡作為干涉儀架構來檢測球面樣品。通過將
樣品劃分為多個子孔徑進行拼接,能夠減少干涉條紋擷取時引入的像差,同
時也能突破量測範圍的限制。
本文將會從使用到的五步相移干涉術及子孔徑拼接干涉術等基礎理論,
延伸至後續實驗的進行。為了確保實驗量測的準確性,在實際量測前,會將
相位模擬引入該演算法中進行分析與討論。根據實驗結果顯示,目前可量測
範圍可達總面積70%。在平面量測中,方均根誤差能達到0.0139wave。球
面樣品的曲率半徑誤差可達到約2%,系統架構可量測樣品極限為±833mm。
驗證了本實驗的可行性。
總言之,本實驗架構以平面標準鏡頭取代球面標準鏡頭,不但能有效的
降低標準鏡頭購置的成本,對於操作人員的專業度要求也降低了許多。在光
學檢測中提出嶄新的做法,唯有在誤差校正及量測範圍中仍有可持續進步
的空間。
摘要(英) Interferometers play an indispensable role in measuring optical components,
particularly in assessing surface flatness. Today, many large optical components
are utilized in industries such as defense and astronomy, making sub-aperture
interferometry a rising trend. If detection technology can be improved, it will pave
the way for new advancements in the manufacturing process of optical
components.
Compared to the traditional method of using Transmission Spheres for curved
surface measurement, this study introduces a novel approach by utilizing a
Transmission Flat within the interferometer setup to measure spherical samples.
By dividing the sample into multiple sub-apertures for stitching, this method
minimizes aberrations introduced during the capture of interference fringes and
overcomes limitations in the measurement range.
This paper will extend from the foundational theories of the five-step phase
shifting interferometry and sub-aperture stitching interferometry to the execution
of subsequent experiments.
vi
To ensure the accuracy of the experimental measurements, phase simulations
will be incorporated into the algorithm for analysis and discussion before actual
measurements. According to the experimental results, the current measurable
range reaches up to 70% of the total area. In flat surface measurements, the root
mean square error achieves 0.0139 waves, while the curvature radius error for
spherical samples reaches approximately 2%. The system is capable of measuring
samples up to a limit of ±833mm, verifying the feasibility of this experiment.
In summary, this experimental setup replaces the Transmission Spheres with
Transmission Flats, effectively reducing the cost of acquiring standard mirrors
while also lowering the expertise required for operators. Although the method
introduces an innovative approach to optical detection, there is still room for
improvement in terms of error correction and measurement range.
關鍵字(中) ★ 子孔徑拼接 關鍵字(英)
論文目次 第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 研究動機與目的 4
1-4 論文架構 6
第二章 基礎理論 7
2-1 相移干涉術 7
2-1-1 相移干涉術-五步相移法 8
2-2 Zernike多項式 10
2-3 相位解纏繞 12
2-4 子孔徑拼接干涉術 13
第三章 實驗架構與方法 17
3-1 實驗設備與架構 17
3-2 實驗流程與方法 19
3-2-1 拼接設計 19
3-2-2 重疊面積與誤差 20
3-2-3 相位擷取 23
3-2-4 相位拼接 25
第四章 實驗結果與討論 28
4-1 平面拼接 28
4-1-1 拼接模擬 28
4-1-2 平面樣品拼接結果 31
4-2 球面拼接 35
4-2-1 拼接模擬 35
4-2-2 球面樣品拼接-曲率半徑10000mm凸面樣品 39
4-2-3 球面樣品拼接-曲率半徑5000mm凸面樣品 46
4-2-4 球面樣品拼接-曲率半徑4000mm凸面樣品 52
4-3 量測極限分析 58
第五章 結論與未來展望 60
參考文獻 62
參考文獻 [1] M. Otsubo, K. Okada, and J. Tsujiuchi, "Measurement of large plane surface shapes by connecting small-aperture interferograms," Optical Engineering, vol. 33, no. 2, pp. 608-613, 1994.
[2] M. Bray, "Stitching interferometer for large plano optics using a standard interferometer," in Optical Manufacturing and Testing II, 1997, vol. 3134: SPIE, pp. 39-50.
[3] M. Bray, Stitching interferometry: how and why it works (Optical Systems Design and Production). SPIE, 1999.
[4] M. Bray, Stitching interferometry and absolute surface shape metrology: similarities (International Symposium on Optical Science and Technology). SPIE, 2001.
[5] J. Fleig, P. Dumas, P. E. Murphy, and G. W. Forbes, "An automated subaperture stitching interferometer workstation for spherical and aspherical surfaces," in Advanced Characterization Techniques for Optics, Semiconductors, and Nanotechnologies, 2003, vol. 5188: SPIE, pp. 296-307.
[6] S. Chen, S. Li, and Y. Dai, "Iterative algorithm for subaperture stitching interferometry for general surfaces," JOSA A, vol. 22, no. 9, pp. 1929-1936, 2005.
[7] S. Chen, S. Li, Y. Dai, and Z. Zheng, "Iterative algorithm for subaperture stitching test with spherical interferometers," JOSA A, vol. 23, no. 5, pp. 1219-1226, 2006.
[8] Y.-C. Chen, P.-C. Lin, C.-M. Lee, and C.-W. Liang, "Iterative phase-shifting algorithm immune to random phase shifts and tilts," Applied Optics, vol. 52, no. 14, pp. 3381-3386, 2013/05/10 2013, doi: 10.1364/AO.52.003381.
[9] C.-W. Liang, H.-S. Chang, P.-C. Lin, C.-C. Lee, and Y.-C. Chen, "Vibration modulated subaperture stitching interferometry," Opt. Express, vol. 21, no. 15, pp. 18255-18260, 2013/07/29 2013, doi: 10.1364/OE.21.018255.
[10] Y.-C. Chen, C.-W. Liang, H.-S. Chang, and P.-C. Lin, "Reconstruction of reference error in high overlapping density subaperture stitching interferometry," Opt. Express, vol. 26, no. 22, pp. 29123-29133, 2018/10/29 2018, doi: 10.1364/OE.26.029123.
[11] P. Carre, "Installation et utilisation du comparateur photoelectrique et interferentiel du Bureau International des Poids et Mesures," Metrologia, vol. 2, no. 1, p. 13, 1966.
[12] J. C. Wyant, B. F. Oreb, and P. Hariharan, "Testing aspherics using two-wavelength holography: use of digital electronic techniques," Applied Optics, vol. 23, no. 22, pp. 4020-4023, 1984/11/15 1984, doi: 10.1364/AO.23.004020.
[13] J. Schwider, R. Burow, K. E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, "Digital wave-front measuring interferometry: some systematic error sources," Applied Optics, vol. 22, no. 21, pp. 3421-3432, 1983/11/01 1983, doi: 10.1364/AO.22.003421.
[14] K. Kinnstaetter, A. W. Lohmann, J. Schwider, and N. Streibl, "Accuracy of phase shifting interferometry," Applied Optics, vol. 27, no. 24, pp. 5082-5089, 1988/12/15 1988, doi: 10.1364/AO.27.005082.
[15] K. Okada, Phase compensation in phase shifting interferometry (17th Congress of the International Commission for Optics: Optics for Science and New Technology). SPIE, 1996.
[16] Z. Wang, P. Bryanston-Cross, and R. Davies, Phase-shifting interferometry with precise phase steps (Optical Instrumentation and Systems Design). SPIE, 1996.
[17] v. F. Zernike, "Beugungstheorie des schneidenver-fahrens und seiner verbesserten form, der phasenkontrastmethode," Physica, vol. 1, no. 7, pp. 689-704, 1934/05/01/ 1934, doi: https://doi.org/10.1016/S0031-8914(34)80259-5.
[18] J. C. Wyant, Zernike Polynomials. 2003.
[19] R. M. Goldstein, H. A. Zebker, and C. L. Werner, "Satellite radar interferometry: Two-dimensional phase unwrapping," Radio Science, vol. 23, no. 4, pp. 713-720, 1988/07/01 1988, doi: https://doi.org/10.1029/RS023i004p00713.
指導教授 郭倩丞(Kuo, Chien-Cheng) 審核日期 2024-11-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明