博碩士論文 111226601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.115.135
姓名 喬瑟夫(Joseph Agnel Romario Ravindran)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 Measurement of Stage Displacement under thermal stress using Heterodyne Interferometer and Verify with Athermalized Shack Hartmann Wavefront sensor
(Measurement of Stage Displacement under thermal stress using Heterodyne Interferometer and Verify with Athermalized Shack Hartmann Wavefront sensor)
相關論文
★ 中小型光學鏡組之高密度全場波前量測★ 使用液晶空間光線調制器之相移式光柵-十字狹縫量測裝置
★ 全像場同時取像像差量測★ 單頻位移與傾角量測干涉儀
★ 廣角物鏡之相對照度探討及其設計應用★ 新型零後焦長太陽能集光器的設計
★ 相移式干涉儀之系統校正及量測軟體的撰寫★ 非球面干涉儀之離軸對心校正
★ 高數值孔徑顯微物鏡設計★ Double Zernike Polynomial 校準光學系統
★ 薄型化光展量疊加太陽能集光器★ A Similarity-Guided Spots Sorting Method to Increase the Dynamic Range of a Shack Hartmann Sensor
★ 雷射微型投影機波前量測技術★ 旋轉掃描式非球面干涉儀之演算法開發及應用
★ 校準低敏型Shack-Hartmann波前感測器★ 利用Slanted-edge方法以及相位回復演算法量測光學系統的成像像差
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-2-12以後開放)
摘要(中) 本研究有兩個部分. 第一部分是驗證所使用的波前感測器是否針對這項工作進行了熱校準. 無熱化波前感測器將補償微透鏡陣列 (MLA) 膨脹、橫向位移、互補金屬氧化物半導體 (CMOS) 位移和材料的熱膨脹,並最大限度地減少熱應力條件下的像差。一種方法是證明熱補償後WFS影像位置的位移差異被有效縮小.
第二部分是透過實驗和理論來測量溫度每升高一度系統的焦移量. 儘管線性平台配備了光柵編碼器,但仍使用外差干涉儀來測量奈米精度的位移,因為連接到平台會經歷熱膨脹。使用乾涉儀的原因是它獨立於系統. 使用鼓風機將載物台加熱到所需的溫度條件,並將載物台熱膨脹引起的位移記錄在μmD2界面中,這就是載物台熱位移. 同時,使用鏡頭製造商公式計算光學中的焦移,並使用非熱化波前感測器透過重複捕捉熱條件下的影像位置 Z 來驗證計算結果. 總之,非熱化波前感測器在不同的熱條件下提供穩健、可靠和精確的性能,使其在無法保證環境穩定性的關鍵光學應用中不可或缺.
關鍵字:外差干涉儀、Shack Hartmann 波前感測器、焦距移動、熱校準.
摘要(英) This study has two sections. The first section is to verify that the Wavefront sensor being used is thermally calibrated for this work. Athermalized Wavefront sensor will compensate for the Micro Lens Array (MLA) expansion, lateral shift, Complementary Metal Oxide Semiconductor (CMOS) shift, and Thermal expansion of materials and minimize the aberration under thermal stress conditions. One way is to prove that the Displacement difference of the WFS image position is scaled down effectively after Thermal compensation.
The second part is to measure the amount of focal shift in the system per degree rise in temperature both experimental as well as theoretical. A heterodyne interferometer is used to measure the displacements in Nanometer precision even though the Linear stage is equipped with Grating encoders Since attached to the stage will experience Thermal expansion. The reason for using an Interferometer is it is independent of the system. The stage is heated to the required temperature condition using an air blower and the displacement caused by the thermal expansion of the stage is recorded in the μmD2 interface which is the stage Thermal shift. Meanwhile, the focal shift in the optics is calculated using Lens maker formula and the calculated result is verified using an Athermalized Wavefront sensor by capturing the Image position Z under Thermal conditions repeatedly. In summary, athermalized wavefront sensors provide robust, reliable, and precise performance across varying thermal conditions, making them indispensable in critical optical applications where environmental stability cannot be guaranteed.
Keywords: Heterodyne Interferometer, Shack Hartmann Wavefront sensor, Focal Shift, Thermal Calibration.
關鍵字(中) ★ One keyword per line
★ 波前感測器
★ 外差干涉儀
★ 熱應力
★ 熱補償
★ 焦點偏移
關鍵字(英) ★ One keyword per line
★ Wavefront sensor
★ Heterodyne Interferometer
★ Thermal stress
★ Thermal compensation
★ Focal shift
論文目次 Table of Contents

Summary Page
Abstract.........................................v
Acknowledgment...................................vii
Table of Contents................................viii
List of Figures..................................x
List of Tables...................................xii
1.Introduction...................................1
1-1 Research Background.........................1
1-2 Literature Review...........................3
1-3 Research Motivation.........................5

2.Principle......................................6
2-1 Shack Hartmann Wavefront Sensor..............6
2-2 SHWS Wavefront Reconstruction................8
2-3 Heterodyne Interferometer....................9
2-4 Wavefront Uncertainty........................11
2-4-1 Geometrical error........................11
2-4-2 Environmental error......................13

3.Methodology....................................14
3-1 Wavefront sensor Housing Material...........14
3-2 Wavefront sensor Athermalization............14
3-3 Athermalized Sensor Verification............17

4.Focal Shift Calculation........................22
4-1 Lens makers formula.........................22
4-2 Optic system................................24
4-3 Experimental Setup..........................32

5. Interferometer Measurement....................36
5.1 Interferometer Alignment...................36
5.2 Interferometer working setup...............38
5.3 Stage Displacement Measurement.............39
6. Conclusion....................................42

References....................................43
參考文獻 References
〔1〕 B. C. Platt, and R. Shack, "History and Principles of Shack-Hartmann Wavefront Sensing," Journal of Refractive Surgery, vol. 17, pp. S571 - S577, 2001.

〔2〕 Daniel R. Neal, James Copland, and David A. Neal, "Shack-Hartmann wavefront sensor precision and accuracy," Proc. SPIE 4779, 2002.

〔3〕 Ares, J., T. Mancebo, and S. Bara, "Position and displacement sensing with Shack–Hartmann wave-front sensors". Applied Optics. 39(10), p. 1511-1520, 2000.

〔4〕 V. N. Mahajan, ′′Fundamentals of Geometrical Optics′′, SPIE PRESS, 2014.

〔5〕 P. Hariharan, 8 - Measurements of Length, Basics of Interferometry, Second Edition, pp. 57-66, Academic Press, 2007.

〔6〕 P. Hariharan, J - Heterodyne Interferometry, Basics of Interferometry, Second Edition, pp. 201-202, Academic Press, 2007.

〔7〕 Schueler, K. B. (1987). Fundamentals of Heterodyne Interferometry. Hewlett-Packard Journal, 38(3), 10-17.

〔8〕 Yang, G., & Kessel, R. T. (1990). "Heterodyne interferometry for optical metrology: an overview." Applied Optics, 29(23), 3262-3267.

〔9〕 Hetnarski, R. B., & Eslami, M. R. E. (2009). Thermal Stresses: Advanced Theory and Applications. Springer.

〔10〕 Clark, D. R., & Post, R. E. (1984). "Thermal stresses in engineering materials and structures." Journal of Applied Mechanics, 51(1), 1-9.

〔11〕 Fujimoto, H. (2000). "High-precision displacement measurement techniques and applications." Optical Engineering, 39(9), 2466-2473.

〔12〕 Kawata, T., & Shinomori, S. (1993). "High-accuracy displacement measurement using optical interferometry." Applied Optics, 32(19), 3511-3517.

〔13〕 Sirohi, R. S. (1993). Optical Methods of Measurement: Wholefield Techniques. CRC Press.
指導教授 梁肇文(Dr. Chao-Wen Liang) 審核日期 2025-2-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明