![]() |
以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:6 、訪客IP:18.117.216.191
姓名 鍾瀞儀(Ching-Yi Chuang) 查詢紙本館藏 畢業系所 光機電工程研究所在職專班 論文名稱 光學薄膜折射率與帶通濾光片薄膜厚度之研究
(Research on the Refractive Index of Optical Thin Films and the Film Thickness of Bandpass Filters)相關論文 檔案 [Endnote RIS 格式]
[Bibtex 格式]
[相關文章]
[文章引用]
[完整記錄]
[館藏目錄]
至系統瀏覽論文 (2028-8-1以後開放)
摘要(中) 本篇論文研究是關於光學薄膜的設計,在1930年代,真空蒸鍍設備出現後,光學薄膜才真正的開始發展,之後因軍事發展所需,更加快了光學薄膜的進步速度,進步至今,光學薄膜的應用已極為廣泛,從我們最常接觸到的民生用品,再到光學通訊、半導體產業、太空科技的應用…等。
伴隨著積體電路(IC)及半導體產業的蓬勃發展,人們對光學薄膜的需求及品質的要求也不斷提高,追求的是厚度越來越薄且體積越來越小,功能卻需更強大的濾光片,濾光片主要用途為選擇可透射的波長,使其通過,限制不可透射的波長,使其截止,利用多層膜的疊加做到濾光的效果。本篇論文是選用二氧化矽作為低折射率材料,再搭配五氧化二鉭、二氧化鈦、氫化矽及鍺,這四種具有不同材料特性的高折射率材料,並使用兩種設計方法,一種為長波通濾光片、短波通濾光片的合併設計,另一種為帶通濾光片,針對選用材料的區別、設計方式的差別、優化層數的不同,可做出表現各不相同的帶通濾光片,進而選用較符合需求的帶通濾光片。摘要(英) This paper examines the design of optical thin films.In the 1930s,as the development of vacuum deposition equipment,the development of optical thin films truly began.After this,due to the requirements of military demands,the progress of optical thin films has been accelerated even further.Over decades of continuous innovation,the applications of optical thin films have become extremely extensive.From everyday consumer products,to the applications of optical communication,semiconductor industry,space technology,and so on...
With the rapid development of integrated circuits (IC) and the semiconductor industry,demand for optical thin films and the requirements for quality are continuously increasing.There is a requirement for thinner films and smaller dimensions of powerful filters.The primary function of a filter is to allow selected wavelengths to be transmitted.While blocking other wavelengths, achieving the filtering effect through the deposition of multiple layers of film.In this study,silicon dioxide is used as the low refractive index material,combined with tantalum pentoxide,titanium dioxide,hydrogenated silicon,and germanium,as high refractive index materials.Two design methods are applied,one is the combined design of long wave pass filter and short wave pass filter, the other is the bandpass filter design.Based on the differences in material selection,design methods,and optimization of layer numbers,bandpass filters with different performances can be produced to achieve the better performance requirement.關鍵字(中) ★ 光學薄膜
★ 厚度
★ 多層膜
★ 長波通濾光片
★ 短波通濾光片
★ 帶通濾光片
★ 五氧化二鉭
★ 二氧化鈦
★ 氫化矽
★ 鍺關鍵字(英) ★ Optical film
★ Thickness
★ Multilayer film
★ Long wave pass filter
★ Short wave pass filter
★ Band pass filter
★ Ta2O5
★ TiO2
★ SiH
★ Ge論文目次 摘要...................................................... i
ABSTRACT................................................. ii
誌謝.................................................... iii
目錄..................................................... iv
圖目錄.................................................. vii
表目錄................................................... xi
第一章 緒論 .............................................. 1
1-1 前言 ................................................. 1
1-2 研究背景.............................................. 3
1-3 研究動機.............................................. 5
第二章 基本理論............................................ 7
2-1 光學薄膜的基本理論..................................... 7
2-1-1 單層膜之特性......................................... 7
2-1-2 多層膜之特性........................................ 10
2-2 濾光片之原理與介紹.................................... 12
2-2-1 截止濾光片 ........................................ 12
2-2-2 帶通濾光片......................................... 14
第三章 實驗原理與設計流程..................................16
3-1 材料特性............................................. 16
3-1-1 五氧化二鉭(Ta2O5)材料特性........................... 16
3-1-2 二氧化鈦(TiO2)的材料特性............................ 17
3-1-3 氫化非晶矽(a-Si:H)的材料特性........................ 19
3-1-4 鍺(Ge)的材料特性.................................... 21
3-2 Essential Macleod設計流程介紹......................... 23
3-2-1 Essential Macleod軟體介紹.......................... 23
3-2-2 Essential Macleod設計流程.......................... 23
3-3 濾光片設計規格........................................ 29
第四章 實驗結果與分析討論.................................. 30
4-1 長波通濾光片與短波通濾光片之設計結果.................... 30
4-1-1 Ta2O5.............................................. 30
4-1-2 TiO2............................................... 48
4-1-3 SiH................................................ 65
4-1-4 Ge................................................. 81
4-2 帶通濾光片之設計結果.................................. 96
4-2-1 Ta2O5.............................................. 96
4-2-2 TiO2.............................................. 100
4-2-3 SiH............................................... 103
4-2-4 Ge................................................ 108
4-3 濾光片之結果討論.....................................112
4-3-1 濾光片設計的膜層總厚度之比較........................ 113
4-3-2 濾光片設計的設計方式之討論.......................... 114
4-3-3 斜向入射對濾光片設計的影響之討論.................... 120
第五章 結論............................................. 123參考文獻 [1]H.A.Macleod.Thin-Film Optical Filters.Third Edition,London: Institute of Physics Publishing (2001).
[2]Joseph von Fraunhofer Gesannekte Schriften, Munich,Germany (1888).
[3]D. Ozcelik, J. W. Parks, et al. “Optofluidic wavelength division multiplexing for single-virus detection,” Proceedings of the National Academy of Sciences, vol. 112(42), pp. 12933-12937 (2015).
[4]L. B. Freund, S. Suresh. Thin Film Materials: Stress Defect Formation and Surface Evolution[M]. Cambridge: Cambridge University Press (2004).
[5]Cheng-Chung Lee, Sheng-Hui Chen, “Influence of deposition parameters in the fabrication of a large-area narrow band-pass filter of bandwidth on subnanometer scale”, 577–583,Vacuum 74 (2004).
[6]Y. Inaba, M. Kasano, K. Tanaka, and T. Yamaguchi, “Degradation-free MOS image sensor with photonic crystal color filter” , IEEE Electron Device (2006).
[7]Abbas El Gamal and Helmy Eltoukhy.CMOS Image Sensors: An Introduction to the Technology, Design and Performance Limits, Presenting Recent Developments and Future Directions. IEEE Circuits and Devices Magazine (2005).
[8]E. Hetch,“Optics,”4th Edition, pp. 416-425, Addison Wesley Press (2002).
[9]李正中,光學薄膜與鍍膜技術-第八版,台北:藝軒圖書出版社,第255頁 (2016).
[10]C. Chaneliere, J. L. Autran, R. A. B. Devine, and B. Balland, Mater. Sci.Eng. R 22, 269–322 (1998).
[11]F. Rubio, J. Denis, J. M. Albella, and J. M. Martinez-Duart, Thin Solid Films 90, 405 (1982).
[12]E. B. Franke, C. L. Trimble, M. Schubert, J. A. Woollam, and J. S. Hale,
Appl. Phys. Lett. 77, 930 (2000).
[13]A. I. Kingon, J.-P. Maria, and S. K. Streiffer, “Alternative dielectrics to silicon dioxide for memory and logic devices,” Nature 406(6799), 1032–1038 (2000).
[14]R.R. Willey, Antireflection coating for high index cemented doublecs // Appl. Opt. 29, p. 4540 (1990).
[15]R.R. Willey, Designing optical coatings with metal and dielectric materials)
[16]K. Sharma, V. Sharma, S. S. Sharma, “Dye-Sensitized Solar Cells: Fundamentals and Current Status”, Nanoscale research letters, vol. 13, no.1, pp. 381, (Nov. 2018).
[17]D.F. Ollis, E. Pelizetti, N. Serpone.“Photo-catalyzed Destruction of Water Contaminants”, Environ. Sci. Technol, 25, pp. 1523-1529 (1991).
[18]G.K. Boschloo, A. Goossens, J. Schoonman, “Photoelectrochemical Study of Thin Anatase TiO2 Films Prepared by Metallorganic Chemical Vapor Deposition”, J. Electronchem. Soc., 144, pp. 1311 (1997).
[19]L. Kavan, M. Gratzel, “Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis”, Electrochem. Acta 40, pp. 643 (1995).
[20]Y. Lei, L.D. Zhang, J.C. Fan, “Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3”, Chem. Phys. Lett. 338, 231 (2001).
[21]J. Xu, X. Zhao, J. Du, W. Chen, “Preparation, Microstructure and Photocatalytic Activity of the Porous TiO2 Anatase Coating by Sol-Gel Processing”, J. Sol–Gel Sci. Technol. 17, pp. 163 (2000).
[22]戴寶通,鄭晃忠,“太陽能電池技術手冊”,台灣電子材料與元件協會, (2008).
[23]B. C. Easton, J. A. Chapman, O. F. Hill, and M. J. Powell, “The plasma-enhanced deposition of hydrogenated amorphous silicon,”Vacuum, vol. 34, no. 3–4, pp. 371–376, Mar.-Apr. (1984).
[24]R.A. Street, Phys. Stat. Sol. A 166 (1998) 195.
[25]G. G. MacFarlane, T. P. McLean, J. E. Quarrington, and V. Roberts, “Fine structure in the absorption-edge spectrum of Ge,” Phys. Rev., vol. 108, no. 6, pp. 1377–1383, Dec. (1957).
[26]M. Caymax, G. Eneman, F. Bellenger, C. Merckling, A. Delabie,G. Wang, R. Loo, E. Simoen, J. Mitard, B. De Jaeger, G. Hellings,K. De Meyer, M. Meuris, and M. Heyns, “Germanium for advanced CMOS anno 2009: A SWOT analysis,” in IEDM Tech. Dig., pp. 461–464, (Dec. 2009).
[27]A. Toriumi, C. H. Lee, S. K. Wang, T. Tabata, M. Yoshida, D. D. Zhao,T. Nishimura, K. Kita, and K. Nagashio, “Material potential and scalability challenges of germanium CMOS,” in IEDM Tech. Dig., pp. 646–649, (Dec. 2011).
[28]P. Batude, M. Vinet, B. Previtali, C. Tabone, C. Xu, J. Mazurier, O. Weber, F. Andrieu, L. Tosti, L. Brevard, B. Sklenard, P. Coudrain, S. Bobba, H. B. Jamaa, P.-E. Gaillardon, A. Pouydebasque, O. Thomas, C. L. Royer, J.-M. Hartmann, L. Sanchez, L. Baud, V. Carron, L. Clavelier, G. de Micheli, S. Deleonibus, O. Faynot, and T. Poiroux, “Advances, challenges and opportunities in 3D CMOS sequential integration,” in IEDM Tech. Dig., pp. 151–154, (Dec. 2011).
[29]C.-C. Yang, J.-M. Shieh, T.-Y. Hsieh, W.-H. Huang, H.-H. Wang, C.-H. Shen, T.-T. Wu, C.-Y. Chen, K.-S. Chang-Liao, J.-H. Shiu, M.-C. Wu, and F.-L. Yang, “Vth adjustable self-aligned embedded source/drain Si/Ge nanowire FETs and dopant-free NVMs for 3D sequentially integrated circuit,” in IEDM Tech. Dig., pp. 410–413, (Dec. 2014).指導教授 陳昇暉(Sheng-Hui Chen) 審核日期 2024-11-22 推文 plurk
funp
live
udn
HD
myshare
netvibes
friend
youpush
delicious
baidu
網路書籤 Google bookmarks
del.icio.us
hemidemi
myshare