參考文獻 |
1. Guo, Y., Gao, S., Yue, W., Zhang, C. & Li, Y. Anodized Aluminum Oxide-Assisted Low-Cost Flexible Capacitive Pressure Sensors Based on Double-Sided Nanopillars by a Facile Fabrication Method. ACS Appl Mater Interfaces 11, 48594-48603 (2019).
2. Tang, X., Wu, C. et al. Multilevel Microstructured Flexible Pressure Sensors with Ultrahigh Sensitivity and Ultrawide Pressure Range for Versatile Electronic Skins. Small 15, e1804559 (2019).
3. Han, Z., Li, H. et al. Ultralow-Cost, Highly Sensitive, and Flexible Pressure Sensors Based on Carbon Black and Airlaid Paper for Wearable Electronics. ACS Appl Mater Interfaces 11, 33370-33379 (2019).
4. He, J., Zhang, Y. et al. Recent advances of wearable and flexible piezoresistivity pressure sensor devices and its future prospects. Journal of Materiomics 6, 86-101 (2020).
5. Chen, W. & Yan, X. Progress in achieving high-performance piezoresistive and capacitive flexible pressure sensors: A review. Journal of Materials Science & Technology 43, 175-188 (2020).
6. Haque, A.B.M.T., Tutika, R., Byrum, R.L. & Bartlett, M.D. Programmable Liquid Metal Microstructures for Multifunctional Soft Thermal Composites. Advanced Functional Materials 30 (2020).
7. Bartlett, M.D., Fassler, A. et al. Stretchable, High-k Dielectric Elastomers through Liquid-Metal Inclusions. Adv Mater 28, 3726-3731 (2016).
8. Kazem, N., Hellebrekers, T. & Majidi, C. Soft Multifunctional Composites and Emulsions with Liquid Metals. Adv Mater 29 (2017).
9. Guo, Y., Wei, X. et al. Recent Advances in Carbon Material?Based Multifunctional Sensors and Their Applications in Electronic Skin Systems. Advanced Functional Materials 31 (2021).
10. Li, R., Zhou, Q. et al. Research progress of flexible capacitive pressure sensor for sensitivity enhancement approaches. Sensors and Actuators A: Physical 321 (2021).
11. Li, J., Bao, R., Tao, J., Peng, Y. & Pan, C. Recent progress in flexible pressure sensor arrays: from design to applications. Journal of Materials Chemistry C 6, 11878-11892 (2018).
12. Liu, F., Han, F. et al. An Omni-Healable and Highly Sensitive Capacitive Pressure Sensor with Microarray Structure. Chemistry 24, 16823-16832 (2018).
13. Wang, H., Li, Z. et al. Flexible capacitive pressure sensors for wearable electronics. Journal of Materials Chemistry C 10, 1594-1605 (2022).
14. Se Dong, M., Yonghyeon, Y. & Hangsik, S. Simplified Structural Textile Respiration Sensor Based on Capacitive Pressure Sensing Method. IEEE Sensors Journal 14, 3245-3251 (2014).
15. Qin, D., Xia, Y. & Whitesides, G.M. Soft lithography for micro- and nanoscale patterning. Nat Protoc 5, 491-502 (2010).
16. Serrano-Aroca, A. & Deb, S. in Acrylate Polymers for Advanced Applications (2020).
17. Datta, J. & Kasprzyk, P. Thermoplastic polyurethanes derived from petrochemical or renewable resources: A comprehensive review. Polymer Engineering & Science 58 (2017).
18. Amjadi, M., Kyung, K.U., Park, I. & Sitti, M. Stretchable, Skin?Mountable, and Wearable Strain Sensors and Their Potential Applications: A Review. Advanced Functional Materials 26, 1678-1698 (2016).
19. Zhang, S.L., Xin, Z.X., Zhang, Z.X. & Kim, J.K. Characterization of the properties of thermoplastic elastomers containing waste rubber tire powder. Waste Manag 29, 1480-1485 (2009).
20. Xu, F., Li, X. et al. Recent Developments for Flexible Pressure Sensors: A Review. Micromachines (Basel) 9 (2018).
21. Mannsfeld, S.C., Tee, B.C. et al. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat Mater 9, 859-864 (2010).
22. Dinh, T.H.N., Martincic, E., Dufour-Gergam, E. & Joubert, P.Y. Mechanical Characterization of PDMS Films for the Optimization of Polymer Based Flexible Capacitive Pressure Microsensors. Journal of Sensors 2017, 1-9 (2017).
23. Chen, S., Zhuo, B. & Guo, X. Large Area One-Step Facile Processing of Microstructured Elastomeric Dielectric Film for High Sensitivity and Durable Sensing over Wide Pressure Range. ACS Appl Mater Interfaces 8, 20364-20370 (2016).
24. D. Kwon, T.-I.L., M.S. Kim, S. Kim, T.-S. Kim, I. Park in 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (IEEE, Anchorage, AK, USA; 2015).
25. Shi, R., Lou, Z., Chen, S. & Shen, G. Flexible and transparent capacitive pressure sensor with patterned microstructured composite rubber dielectric for wearable touch keyboard application. Science China Materials 61, 1587-1595 (2018).
26. Mao, S. in Capacitor Fundamentals Part 4 – Dielectric Polarization (Knowles Precision Devices; 2019).
27. Yan, F., Shi, Y. et al. Optimization of polarization and electric field of bismuth ferrite-based ceramics for capacitor applications. Chemical Engineering Journal 417 (2021).
28. Psarras, G.C. in Dielectric Polymer Materials for High-Density Energy Storage 11-57 (2018).
29. Dang, Z.-M., Yuan, J.-K. et al. High-permittivity polymer nanocomposites: Influence of interface on dielectric properties. Journal of Advanced Dielectrics 03 (2013).
30. R. Tamura, E.L., T. Manaka and M. Iwamoto Analysis of pentacene field effect transistor as a Maxwell-Wagner effect element. J. Appl. Phys. 100 (2006).
31. Fan, Y., Hang, Z. et al. Frequency-dependent electrical properties of microscale self-enclosed ionic liquid enhanced soft composites. Soft Matter 19, 1913-1929 (2023).
32. Hashemi, R. & Weng, G.J. A theoretical treatment of graphene nanocomposites with percolation threshold, tunneling-assisted conductivity and microcapacitor effect in AC and DC electrical settings. Carbon 96, 474-490 (2016).
33. Toshikatsu Tanaka, M.K., Norikazu Fuse and Yoshimichi Ohki Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Transactions on Dielectrics and Electrical Insulation 12, 669-681 (2005).
34. Lewis, T.J. Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Transactions on Dielectrics and Electrical Insulation 11, 739-753 (2004).
35. Thakur, Y., Zhang, T. et al. Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers. Nanoscale 9, 10992-10997 (2017).
36. Tomer, V., Polizos, G., Randall, C.A. & Manias, E. Polyethylene nanocomposite dielectrics: Implications of nanofiller orientation on high field properties and energy storage. Journal of Applied Physics 109 (2011).
37. Li, Q., Han, K., Gadinski, M.R., Zhang, G. & Wang, Q. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26, 6244-6249 (2014).
38. Pillai, C.M.P.K.C. Pyroelectric Behavior in Barium Titante/Polyvintlidene Fluoride Composites. IEEE Transactions on Electrical Insulation EI-21, 501 - 504 (1986).
39. Nan, C.-W. Physics of Iinhomogeneous Inorganic Materials. Progress in Materials Science 37, 1-116 (1993).
40. Zhang, L., Wang, W., Wang, X., Bass, P. & Cheng, Z.Y. Metal-polymer nanocomposites with high percolation threshold and high dielectric constant. Applied Physics Letters 103 (2013).
41. Mu, C., Li, J. et al. Enhanced Piezocapacitive Effect in CaCu3Ti4O12–Polydimethylsiloxane Composited Sponge for Ultrasensitive Flexible Capacitive Sensor. ACS Applied Nano Materials 1, 274-283 (2017).
42. Huang, C., Wang, X. et al. Soft and Stretchable Liquid Metal-Elastomer Composite for Wearable Electronics. ACS Appl Mater Interfaces 14, 38196-38204 (2022).
43. Zhang, Y., Liu, S. et al. Highly Stretchable and Sensitive Pressure Sensor Array Based on Icicle-Shaped Liquid Metal Film Electrodes. ACS Appl Mater Interfaces 12, 27961-27970 (2020).
44. Yang, J., Kwon, K.Y. et al. Skin?Inspired Capacitive Stress Sensor with Large Dynamic Range via Bilayer Liquid Metal Elastomers. Advanced Materials Technologies 7 (2021).
45. Byun, S.-H., Sim, J.-Y. et al. Mechanically transformative electronics, sensors,and implantable devices. Science Advanced 5 (2019).
46. Zhixing Zhang, L.T., Can Chen, Huitao Yu, Huihui Bai, Ling Wang, Mengmeng Qin, Yiyu Feng, Wei Feng Liquid metal-created macroporous composite hydrogels with self-healing ability and multiple sensations as artificial flexible sensors. J. Mater. Chem. A 9, 875-883 (2021).
47. Munirathinam, K., Kwon, K., Park, J. & Lee, D.-W. Liquid dielectric layer-based microfluidic capacitive sensor for wireless pressure monitoring. Sensors and Actuators A: Physical 357 (2023).
48. 高永菱,「鎵奈米粒子蒸鍍於聚合物之自組裝機制探討及其電漿子光學性質研究」
,國立中央大學,碩士論文,民國111年06月。
49. Jadav, G.L., Aswal, V.K., Bhatt, H., Chaudhari, J.C. & Singh, P.S. Influence of film thickness on the structure and properties of PDMS membrane. Journal of Membrane Science 415-416, 624-634 (2012).
50. Nan, C.-W. Effective-medium theory of piezoelectric composites. Journal of Applied Physics 76, 1155-1163 (1994).
51. Feng, Y., Li, M.-L. et al. Polymer/metal multi-layers structured composites: A route to high dielectric constant and suppressed dielectric loss. Applied Physics Letters 112 (2018).
52. Gao, W., Zheng, Y., Shen, J. & Guo, S. Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles. ACS Appl Mater Interfaces 7, 1541-1549 (2015).
53. Hoang, A., Faruqe, O., Bury, E., Park, C. & Koh, A. Homogeneity of liquid metal polymer composites: impact on mechanical, electrical, and sensing behavior. Soft Matter 19, 7202-7215 (2023).
54. Deepa, K.S., Sebastian, M.T. & James, J. Effect of interparticle distance and interfacial area on the properties of insulator-conductor composites. Applied Physics Letters 91 (2007). |