博碩士論文 111329029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.227.102.112
姓名 吳秉諭(Bing-Yu Wu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 以反應式濺鍍前驅物應用於兩階段式成長二硫化鉬薄膜
(Two-Step Growth of Molybdenum Disulfide Thin Films using Reactive Sputtered Precursors)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 彈性基板嵌入金屬奈米粒子之光-物質耦合性質之探討★ 無鉛銲料錫銀銦與銅基板的界面反應
★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究
★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板
★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究
★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用
★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板
★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 二硫化鉬 (MoS2) 在許多研究中都展現優異的光電性質,被視為下一世代前瞻半導體,然而目前生產高品質且層數控制良好的 MoS2 多層薄膜仍然是一項重大挑戰,使商業價值降低。而兩階段式的成長則可以有效提高良率,透過物理沉積的方式將前驅物鍍在基板上再經過高溫和硫氣體分子反應,獲得層數可控且兼具品質的 MoS2 連續薄膜。
本研究利用 RF 磁控濺鍍系統 (Radio-Frequency Magnetron Sputtering) 進行反應式氧化鉬電漿沉積,將前驅物濺鍍在氧化矽基板上再進行高溫轉化成 MoS2 薄膜,透過調控濺鍍時間控制不同的 MoS2 層數,探討不同製程參數對成長 MoS2 薄膜的影響,其參數包含電漿功率、壓力、載臺溫度、鉬氧比及硫化溫度。利用拉曼光譜 (Raman Spectroscopy) 分析各參數下,發現在最佳條件下,電性量測可得到開關電比為104 ,電子遷移率 0.5 cm2 V?1 s?1 ,照光下的光電流變化量可到 244 %。
摘要(英) Molybdenum disulfide (MoS?) has demonstrated excellent optoelectronic properties in numerous studies and is considered a promising next-generation semiconductor. However, producing high-quality MoS? multilayer thin films with well-controlled layer numbers remains a significant challenge, which reduces its commercial viability. The two-step growth method can effectively improve yield by physically depositing precursors onto substrates, followed by high-temperature reactions with sulfur gas molecules to obtain continuous MoS? thin films with controllable layer numbers and high quality.
In this study, we utilized a radio-frequency magnetron sputtering system to perform reactive plasma deposition of molybdenum oxide, sputtering the precursor onto silicon oxide substrates, followed by high-temperature conversion into MoS? thin films. By adjusting the sputtering time to control different MoS? layer numbers, we investigated the effects of various process parameters on the growth of MoS? thin films. These parameters include plasma power, pressure, substrate temperature, molybdenum-to-oxygen ratio, and sulfurization temperature. Using Raman spectroscopy to analyze the samples under different conditions, we found that under optimal parameters, electrical measurements yielded an on/off current ratio of 10?, an electron mobility of 0.5?cm2?V?1?s?1, and a photocurrent variation of up to 244% under illumination.
關鍵字(中) ★ 二硫化鉬
★ RF反應式濺鍍
★ 控制層數
★ 兩段式成長
關鍵字(英) ★ MoS2
★ radio-frequency reactive sputtering
★ layer-controlled
★ two-step growth
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1研究背景 1
1-2 研究動機 2
第二章 文獻回顧及探討 3
2-1 過渡金屬硫族化合物MoS2介紹 3
2-1-1 MoS2結構介紹 3
2-1-2 MoS2製備方法 4
2-1-3 MoS2之光學性質 6
2-2 兩階段式成長 MoS2 薄膜製程與電晶體特性簡介 11
2-2-1金屬與金屬氧化鉬作為前驅物之影響 13
2-2-2兩階段式成長MoS2文獻回顧 15
2-2-3 兩階段成長 MoS2 之電晶體近況發展 20
第三章 研究方法 22
3-1 實驗架構 22
3-2 實驗材料與設備 23
3-2 實驗步驟 23
第四章 結果與討論 24
4-1 兩階段式製程參數探討 24
4-1-1 電漿功率與氧分壓條件的影響 24
4-1-2 基板溫度對MoS2 薄膜之影響 29
4-1-3 不同硫化溫度對 MoS2 薄膜之影響 31
4-2 MoS2 電晶體之電性分析 34
4-2-1 層數對 MoS2 電晶體之電性影響 34
4-2-2 MoS2 電晶體之光響應 38
第五章 結論 41
參考文獻 42
參考文獻 1. Schaller, R.R. Moore′s law: past, present and future. IEEE Spectrum 34, 52-59 (1997).
2. Schwierz, F., Pezoldt, J. & Granzner, R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7, 8261-8283 (2015).
3. Lu, N., Guo, H. et al. MoS2/MX2 heterobilayers: bandgap engineering via tensile strain or external electrical field. Nanoscale 6, 2879-2886 (2014).
4. Wang, Q., Lai, J. & Sun, D. Review of photo response in semiconductor transition metal dichalcogenides based photosensitive devices. Optical Materials Express 6 (2016).
5. K. S. Novoselov, A.K.G. Electric Field Effect in Atomically Thin Carbon Films. science 306 (2004).
6. Kumar, V.P. & Panda, D.K. Review—Next Generation 2D Material Molybdenum Disulfide (MoS2): Properties, Applications and Challenges. ECS Journal of Solid State Science and Technology 11 (2022).
7. Samy, O., Zeng, S., Birowosuto, M.D. & El Moutaouakil, A. A Review on MoS2 Properties, Synthesis, Sensing Applications and Challenges. Crystals 11, 355 (2021).
8. Li, T., Guo, W. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat Nanotechnol 16, 1201-1207 (2021).
9. Sun, M., Xie, D. et al. Lateral multilayer/monolayer MoS2 heterojunction for high performance photodetector applications. Scientific Reports 7 (2017).
10. K. F. Mak, C.L., J. Hone Atomically thin MoS2: A new direct-gap semiconductor Physical Review Letters 105 (2010).
11. Hu, W., Sheng, Z. et al. Ambipolar 2D Semiconductors and Emerging Device Applications. Small Methods 5 (2020).
12. Thomas, N., Mathew, S. et al. 2D MoS2: structure, mechanisms, and photocatalytic applications. Materials Today Sustainability 13 (2021).
13. Toh, R.J., Sofer, Z. & Luxa, J. 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications 53, 3054-3057 (2017).
14. Li, H., Yin, Z. et al. Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8, 63-67 (2012).
15. Li, W., Zhang, Y. et al. Gas Sensors Based on Mechanically Exfoliated MoS2 Nanosheets for Room-Temperature NO2 Detection. Sensors 19, 2123 (2019).
16. Magda, G.Z., Pet?, J. et al. Exfoliation of large-area transition metal chalcogenide single layers. Scientific Reports 5, 14714 (2015).
17. Tan, L.K., Liu, B. et al. Atomic layer deposition of a MoS2 film. Nanoscale 6, 10584-10588 (2014).
18. Liu, H. A short review on thermal vapor sulfurization of semiconductor thin films for optoelectronic applications. Vacuum 154, 44-48 (2018).
19. Ma, X. Thermal Evaporation Deposition of Few-layer MoS2 Films. Nano-Micro Letters 5, 135-139 (2013).
20. Zhang, W., Huang, J.K. et al. High-gain phototransistors based on a CVD MoS2 monolayer. Adv Mater 25, 3456-3461 (2013).
21. Suenaga, K., Ji, H.G. et al. Surface-Mediated Aligned Growth of Monolayer MoS2 and In-Plane Heterostructures with Graphene on Sapphire. ACS Nano 12, 10032-10044 (2018).
22. Wang, T., Guo, J. et al. Synthesis of High-Quality Monolayer MoS2 via a CVD Upstream Deposition Strategy for Charge Capture and Collection. Crystal Growth & Design 24, 2755-2763 (2024).
23. Kobayashi, T., Sato, C., Dohi, T. & Kiriya, D. Propose an automated exfoliation process of MoS2 with a universal mechanical setup. Applied Physics Express 16 (2023).
24. Jurca, T., Moody, M.J. et al. Low-Temperature Atomic Layer Deposition of MoS2 Films. Angew Chem Int Ed Engl 56, 4991-4995 (2017).
25. Hu, C., Yuan, C. et al. Work function variation of monolayer MoS2 by nitrogen-doping. Applied Physics Letters 113, 041602 (2018).
26. Xu, K., Zhao, Y. et al. Doping of two-dimensional MoS2 by high energy ion implantation. Semiconductor Science and Technology 32, 124002 (2017).
27. Lee, Y., Lee, J. et al. Synthesis of wafer-scale uniform molybdenum disulfide films with control over the layer number using a gas phase sulfur precursor. Nanoscale 6, 2821-2826 (2014).
28. Conley, H.J., Wang, B. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett 13, 3626-3630 (2013).
29. Yang, L., Cui, X. et al. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci Rep 4, 5649 (2014).
30. Yeung. Y. H.; Xiaofei. L., W.J. Exceptional Tunability of Band Energy in a Compressively Strained Trilayer MoS2 Sheet. ACS Nano (2013).
31. Zhu, C.R., Wang, G. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Physical Review B 88 (2013).
32. Kim, H.J., Kim, D. et al. Changes in the Raman spectra of monolayer MoS2 upon thermal annealing. Journal of Raman Spectroscopy 49, 1938-1944 (2018).
33. Mignuzzi, S., Pollard, A.J. et al. Effect of disorder on Raman scattering of single-layer MoS2. Physical Review B 91 (2015).
34. Yu, H., Liao, M. et al. Wafer-Scale Growth and Transfer of Highly-Oriented Monolayer MoS2 Continuous Films. ACS Nano 11, 12001-12007 (2017).
35. Zhan, Y., Liu, Z., Najmaei, S., Ajayan, P.M. & Lou, J. Large?Area Vapor?Phase Growth and Characterization of MoS2 Atomic Layers on a SiO2 Substrate. Small 8, 966-971 (2012).
36. Jin, Z., Shin, S., Kwon, D.H., Han, S.-J. & Min, Y.-S. Novel chemical route for atomic layer deposition of MoS2 thin film on SiO2/Si substrate. Nanoscale 6, 14453-14458 (2014).
37. Xu, X., Wang, Z., Lopatin, S., Quevedo-Lopez, M.A. & Alshareef, H.N. Wafer scale quasi single crystalline MoS2 realized by epitaxial phase conversion. 2D Materials 6, 015030 (2018).
38. Chiappe, D., Asselberghs, I., Sutar, S., Iacovo, S. & Afanas′ev, V. Controlled Sulfurization Process for the Synthesis of Large Area MoS2 Films and MoS2/WS2 Heterostructures. Advanced Materials Interfaces 3 (2015).
39. Shi, M.L., Chen, L. et al. Top-Down Integration of Molybdenum Disulfide Transistors with Wafer-Scale Uniformity and Layer Controllability. Small 13 (2017).
40. Lin, Y.-C., Zhang, W. et al. Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4, 6637 (2012).
41. Fatima, S., Gu, Y. et al. Comparative Study between Sulfurized MoS2 from Molybdenum and Molybdenum Trioxide Precursors for Thin-Film Device Applications. ACS Appl Mater Interfaces 15, 16308-16316 (2023).
42. Kaupmees, L., Altosaar, M., Volobujeva, O. & Barvinschi, P. Study of Mo selenisation process on different Mo substrates. MRS Proceedings 1165 (2011).
43. Altvater, M., Muratore, C., Snure, M. & Glavin, N.R. Two?Step Conversion of Metal and Metal Oxide Precursor Films to 2D Transition Metal Dichalcogenides and Heterostructures. Small (2024).
44. Hynek, D.J., Singhania, R.M. et al. Cm2-Scale Synthesis of MoTe2Thin Films with Large Grains and Layer Control. ACS Nano 15, 410-418 (2021).
45. Tong, X.W., Lin, Y.N. et al. Direct Tellurization of Pt to Synthesize 2D PtTe2 for High-Performance Broadband Photodetectors and NIR Image Sensors. ACS Appl Mater Interfaces 12, 53921-53931 (2020).
46. Pacley, S., Hu, J. et al. Impact of reduced graphene oxide on MoS2 grown by sulfurization of sputtered MoO3 and Mo precursor films. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 34, 041505 (2016).
47. Junqing, W. Synthesis of MoS2 via in situ sulfurize sputtering Mo. CSTIC (2018).
48. Tao, J., Chai, J. et al. Growth of wafer-scale MoS2 monolayer by magnetron sputtering. Nanoscale 7, 2497-2503 (2015).
49. Lopez-Pinto, N., Tom, T. et al. Deposition and characterisation of sputtered molybdenum oxide thin films with hydrogen atmosphere. Applied Surface Science 563 (2021).
50. Laskar, M.R., Ma, L. et al. Large area single crystal (0001) oriented MoS2. Applied Physics Letters 102, 252108 (2013).
51. Xu, X., Das, G. et al. High?Performance Monolayer MoS2 Films at the Wafer Scale by Two?Step Growth. Advanced Functional Materials 29 (2019).
52. Balasubramanyam, S., Merkx, M.J.M. et al. Area-Selective Atomic Layer Deposition of Two-Dimensional WS2 Nanolayers. ACS Materials Letters 2, 511-518 (2020).
53. Wu, C.R., Chang, X.R., Wu, C.H. & Lin, S.Y. The Growth Mechanism of Transition Metal Dichalcogenides by using Sulfurization of Pre-deposited Transition Metals and the 2D Crystal Hetero-structure Establishment. Sci Rep 7, 42146 (2017).
54. Das, S., Chen, H.Y., Penumatcha, A.V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett 13, 100-105 (2013).
55. Yang, P., Zou, X. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nature Communications 9 (2018).
56. Song, X., Zan, W. et al. A novel synthesis method for large-area MoS2 film with improved electrical contact. 2D Materials 4, 025051 (2017).
57. Choudhary, N., Park, J., Hwang, J.Y. & Choi, W. Growth of large-scale and thickness-modulated MoS2 nanosheets. ACS Appl Mater Interfaces 6, 21215-21222 (2014).
58. Hussain, S., Shehzad, M.A. et al. Synthesis and characterization of large-area and continuous MoS2 atomic layers by RF magnetron sputtering. Nanoscale 8, 4340-4347 (2016).
59. Pachlhofer, J.M., Jachs, C. et al. Structure evolution in reactively sputtered molybdenum oxide thin films. Vacuum 131, 246-251 (2016).
60. Thornton, J.A. Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. Journal of Vacuum Science and Technology 11, 666-670 (1974).
61. Xu, J., Yuan, Y., Wang, F. & Zhang, K. Influence of Substrate Temperature on Properties of Indium Tin Oxide Thin Films Prepared by DC Magnetron Sputtering. ECS Transactions 44, 1311-1316 (2012).
62. Choi, W., Cho, M.Y. et al. High?Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared. Advanced Materials 24, 5832-5836 (2012).
63. Yin, Z., Li, H. et al. Single-Layer MoS2 Phototransistors. ACS Nano 6, 74-80 (2012).
64. Choi, W., Cho, M.Y. et al. High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater 24, 5832-5836 (2012).
指導教授 陳一塵(I-Chen Chen) 審核日期 2024-12-3
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明