博碩士論文 111222603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:77 、訪客IP:3.144.136.254
姓名 梅吉莎(Kiersten Meigs)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Electromagnetic Waves on Spheres)
相關論文
★ TensoriaCalc - 處理偽黎曼張量分析問題的使用者導向Mathematica套件★ The Divergent Energy-Momentum Flux in Nonlocal Gravity
★ 漸近德西特時空中的延遲時間尾部和非線性記憶
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-1以後開放)
摘要(中) 我們透過分析電磁波的格林函數來研究電磁波在球形時空中的傳播。我們採用純量向量分
解來求解 2 球面上的麥克斯韋方程組,並僅根據純量格林函數表達其解。然後,我們概述了
一種使用 integral-differential operator 從熱核計算相關格林函數的方法,該算子將不同維度
的相應熱核關聯起來,以便所有這些都可以從 1維球體解生成。我們將此方法應用於 2 維
和 3 維球體,並獲得有質量和無質量格林函數的結果。我們注意到,當質量下降到由空間維
度D 確定的某個值以下時,我們的結果顯示出非因果傳播。突出的因果關係問題。
摘要(英) We here study the propagation of electromagnetic waves in spherical spacetimes by analyz-
ing their Green’s functions. We employ a scalar-vector decomposition to solve Maxwell’s
equations on the 2-sphere and write their solutions solely in terms of scalar Green’s func-
tions. We then outline a method for calculating the relevant Green’s functions from their
heat kernels using an integral-differential operator which relates the corresponding heat
kernels in different dimensions, so that all of them may be generated from the 1-sphere
solution. We apply this method to the 2 and 3 dimensional spheres and obtain results
for both the the massive and massless Green’s functions. We note that our results display
acausal propagation when the mass drops below a certain value determined by the spatial
dimension D. In the future, we hope to extend our results to general dimensional spherical
spacetimes and address any outstanding causality issues that remain.
關鍵字(中) ★ 電磁波
★ 球體
★ 格林函數
關鍵字(英) ★ Electromagnetic Waves
★ Spheres
★ Green′s Functions
論文目次 Contents
1 Introduction 1
2 Maxwell’s Equations on R × S2 3
2.1 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Magnetic Field Fij . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Electric Field F0i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Relation Between Tensor and Scalar Green’s Functions . . . . . . . . . . . . . 11
3 Symmetric Green’s Function from Heat Kernel 13
3.1 Feynman Green’s Function from Heat Kernel . . . . . . . . . . . . . . . . . . . 13
3.2 Symmetric Green’s Function from Feynman Green’s Function . . . . . . . . . 14
4 Green’s Functions from Heat Kernels 15
4.1 Intertwining Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 S3 × R (Einstein Static Universe) Symmetric Green’s Function . . . . . . . . . 16
4.2.1 Massive Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Massless Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 2+1D Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.1 Massive Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.2 Massless Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5 Conclusion 21
A Comparison against Feynman Green’s Function in [3] 22
Bibliography 25
參考文獻 Bibliography
[1] Arlen Anderson. “Operator method for finding new propagators from old”. In: Physi-
cal Review D 37.2 (1988), p. 536.
[2] Arlen Anderson and Roberto Camporesi. “Intertwining operators for solving differ-
ential equations, with applications to symmetric spaces”. In: Communications in math-
ematical physics 130 (1990), pp. 61–82.
[3] Roberto Camporesi. “Harmonic analysis and propagators on homogeneous spaces”.
In: Physics Reports 196.1-2 (1990), pp. 1–134.
[4] Marc Casals and Brien C Nolan. “Kirchhoff integral approach to the calculation of
Green’s functions beyond the normal neighborhood”. In: Physical Review D—Particles,
Fields, Gravitation, and Cosmology 86.2 (2012), p. 024038.
[5] Yi-Zen Chu. “A line source in Minkowski for the de Sitter spacetime scalar Green’s
function: Massless minimally coupled case”. In: Journal of Mathematical Physics 55.9
(2014).
[6] Sam R Dolan and Adrian C Ottewill. “On an expansion method for black hole quasi-
normal modes and Regge poles”. In: Classical and Quantum Gravity 26.22 (2009),
p. 225003.
[7] Sam R Dolan and Adrian C Ottewill. “Wave propagation and quasinormal mode ex-
citation on Schwarzschild spacetime”. In: Physical Review D—Particles, Fields, Gravita-
tion, and Cosmology 84.10 (2011), p. 104002.
[8] Abraham I Harte and Theodore D Drivas. “Caustics and wave propagation in curved
spacetimes”. In: Physical Review D—Particles, Fields, Gravitation, and Cosmology 85.12
(2012), p. 124039.
[9] Amos Ori. “private communication (2008) and report (2009)”. available at http://
physics.technion.ac.il/~amos/acoustic.pdf.
指導教授 瞿怡仁(Yi-Zen Chu) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明