參考文獻 |
1. Becker, J.A. and J.N. Shive, The transistor -: A new semiconductor amplifier (Reprinted from <i>The Electrical Engineer</i>, vol 68, pg 215-221, 1949). Proceedings of the Ieee, 1999. 87(8): p. 1389-1396.
2. IC Insights. (2022). Integrated circuit (IC) unit shipments worldwide from 1980 to 2022 (in billions). Statista. https://www.statista.com/statistics/277241/worldwide-ic-unit-shipments-since-1980/.
3. Moore, G.E., Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965). Proceedings of the Ieee, 1998. 86(1): p. 82-85.
4. Zhang, Q.Z., et al., New structure transistors for advanced technology node CMOS ICs. National Science Review, 2024. 11(3): p. 18.
5. Khanna, V.K. and V.K. Khanna, Short-channel effects in MOSFETs. Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies, 2016: p. 73-93.
6. Wann, C.H., et al., A comparative study of advanced MOSFET concepts. IEEE Transactions on Electron Devices, 1996. 43(10): p. 1742-1753.
7. Troutman, R.R., VLSI limitations from drain-induced barrier lowering. IEEE Journal of Solid-State Circuits, 1979. 14(2): p. 383-391.
8. Kim, K.S., et al., The future of two-dimensional semiconductors beyond Moore’s law. Nature Nanotechnology, 2024. 19(7): p. 895-906.
9. Akinwande, D., et al., Graphene and two-dimensional materials for silicon technology. Nature, 2019. 573(7775): p. 507-518.
10. Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
11. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
12. Kimouche, A., et al., Ultra-narrow metallic armchair graphene nanoribbons. Nature communications, 2015. 6(1): p. 10177.
13. Yu, W., et al., Anomalous doping effect in black phosphorene using first-principles calculations. Physical Chemistry Chemical Physics, 2015. 17(25): p. 16351-16358.
14. Lee, K.H., et al., Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano letters, 2012. 12(2): p. 714-718.
15. Wang, Y., et al., Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes. ACS nano, 2013. 7(11): p. 10083-10093.
16. Kim, Y., et al., Atomic-Layer-Deposition-Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. Advanced Materials, 2021. 33(47): p. 33.
17. Wang, Y.W., et al., Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Research, 2022. 15(4): p. 3675-3694.
18. Shahzad, F., et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016. 353(6304): p. 1137-1140.
19. Sun, K., J. Chen, and X. Yan, The future of memristors: Materials engineering and neural networks. Advanced Functional Materials, 2021. 31(8): p. 2006773.
20. Garg, M., et al., Different types and intense classification of 2D materials. Advanced Applications of 2D Nanostructures: Emerging Research and Opportunities, 2021: p. 11-28.
21. Dong, R. and I. Kuljanishvili, Progress in fabrication of transition metal dichalcogenides heterostructure systems. Journal of Vacuum Science & Technology B, 2017. 35(3).
22. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 2012. 7(11): p. 699-712.
23. Manzeli, S., et al., 2D transition metal dichalcogenides. Nature Reviews Materials, 2017. 2(8): p. 1-15.
24. Han, S.A., R. Bhatia, and S.-W. Kim, Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence, 2015. 2: p. 1-14.
25. Yang, R., et al., 2D transition metal dichalcogenides for photocatalysis. Angewandte Chemie, 2023. 135(13): p. e202218016.
26. Lee, E., et al., Direct CVD growth of a graphene/MoS2 heterostructure with interfacial bonding for two-dimensional electronics. Chemistry of Materials, 2020. 32(11): p. 4544-4552.
27. Wang, P., et al., Mechanism of alkali metal compound-promoted growth of monolayer MoS2: eutectic intermediates. Chemistry of Materials, 2019. 31(3): p. 873-880.
28. Yu, Z., et al., Analyzing the carrier mobility in transition?metal dichalcogenide MoS2 field?effect transistors. Advanced Functional Materials, 2017. 27(19): p. 1604093.
29. Pumera, M. and A.H. Loo, Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends in Analytical Chemistry, 2014. 61: p. 49-53.
30. Pumera, M., Z. Sofer, and A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A, 2014. 2(24): p. 8981-8987.
31. Velusamy, D.B., et al., Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nature communications, 2015. 6(1): p. 8063.
32. Donarelli, M. and L. Ottaviano, 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. Sensors, 2018. 18(11): p. 3638.
33. Antunes, F.P.N., et al., Van der Waals interactions and the properties of graphite and 2H-, 3R-and 1T-MoS2: A comparative study. Computational Materials Science, 2018. 152: p. 146-150.
34. Thomas, N., et al., 2D MoS<sub>2</sub>: structure, mechanisms, and photocatalytic applications. Materials Today Sustainability, 2021. 13: p. 16.
35. Stephenson, T., et al., Lithium ion battery applications of molybdenum disulfide (MoS 2) nanocomposites. Energy & Environmental Science, 2014. 7(1): p. 209-231.
36. Kumar, R., et al., MoS2?based nanomaterials for room?temperature gas sensors. Advanced Materials Technologies, 2020. 5(5): p. 1901062.
37. Toh, R.J., et al., 3R phase of MoS 2 and WS 2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017. 53(21): p. 3054-3057.
38. Lembke, D., S. Bertolazzi, and A. Kis, Single-Layer MoS<sub>2</sub> Electronics. Accounts of Chemical Research, 2015. 48(1): p. 100-110.
39. Ottaviano, L., et al., Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Materials, 2017. 4(4): p. 045013.
40. Sun, J., et al., Synthesis methods of two-dimensional MoS2: A brief review. Crystals, 2017. 7(7): p. 198.
41. Baptista, A., et al., Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings, 2018. 8(11): p. 402.
42. Zeng, H., et al., Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Frontiers of Physics, 2023. 18(5): p. 48.
43. Shen, P.-C., et al., CVD technology for 2-D materials. IEEE Transactions on Electron Devices, 2018. 65(10): p. 4040-4052.
44. Van Der Zande, A.M., et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature materials, 2013. 12(6): p. 554-561.
45. Lee, Y.-H., et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. arXiv preprint arXiv:1202.5458, 2012.
46. Chen, W., et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. Journal of the American Chemical Society, 2015. 137(50): p. 15632-15635.
47. Zhang, J., et al., Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Materials Today, 2020. 40: p. 132-139.
48. Mitterer, C., PVD and CVD hard coatings, in Comprehensive hard materials. 2014. p. 449-467.
49. Schalk, N., M. Tkadletz, and C. Mitterer, Hard coatings for cutting applications: Physical vs. chemical vapor deposition and future challenges for the coatings community. Surface and Coatings Technology, 2022. 429: p. 127949.
50. Kim, Y., et al., Atomic?Layer?Deposition?Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. Advanced Materials, 2021. 33(47): p. 2005907.
51. George, S.M., Atomic layer deposition: an overview. Chemical reviews, 2010. 110(1): p. 111-131.
52. Tan, L.K., et al., Atomic layer deposition of a MoS 2 film. Nanoscale, 2014. 6(18): p. 10584-10588.
53. Briggs, N., et al., A roadmap for electronic grade 2D materials. 2D Materials, 2019. 6(2): p. 022001.
54. Zhang, K.A., et al., Low-Temperature Vapor-Phase Growth of 2D Metal Chalcogenides. Small, 2024. 20(19): p. 20.
55. Thean, A., et al. Low-thermal-budget BEOL-compatible beyond-silicon transistor technologies for future monolithic-3D compute and memory applications. in 2022 International Electron Devices Meeting (IEDM). 2022. IEEE.
56. Choudhury, T.H., et al., Epitaxial growth of two-dimensional layered transition metal dichalcogenides. Annual Review of Materials Research, 2020. 50(1): p. 155-177.
57. Kumar, V.K., et al., Role of Surface Processes in Growth of Monolayer MoS2: Implications for Field-Effect Transistors. ACS Applied Nano Materials, 2021. 4(7): p. 6734-6744.
58. Kim, H., et al., Suppressing Nucleation in Metal-Organic Chemical Vapor Deposition of MoS<sub>2</sub> Monolayers by Alkali Metal Halides. Nano Letters, 2017. 17(8): p. 5056-5063.
59. Lei, J., et al., Salt-assisted MoS2 growth: Molecular mechanisms from the first principles. Journal of the American Chemical Society, 2022. 144(16): p. 7497-7503.
60. Zhang, K., et al., Considerations for utilizing sodium chloride in epitaxial molybdenum disulfide. ACS applied materials & interfaces, 2018. 10(47): p. 40831-40837.
61. Tang, A., et al., Toward Low-Temperature Solid-Source Synthesis of Monolayer MoS<sub>2</sub>. Acs Applied Materials & Interfaces, 2021. 13(35): p. 41866-41874.
62. People, R. and J. Bean, Calculation of critical layer thickness versus lattice mismatch for Ge x Si1? x/Si strained?layer heterostructures. Applied Physics Letters, 1985. 47(3): p. 322-324.
63. Deleporte, E., et al., Evolution with temperature of the strain state of GaN thin layers grown on different substrates. physica status solidi (b), 1999. 216(1): p. 713-717.
64. Ji, Q., et al., Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano letters, 2017. 17(8): p. 4908-4916.
65. Liu, K.-K., et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano letters, 2012. 12(3): p. 1538-1544.
66. Qin, B., et al., Substrates in the synthesis of two-dimensional materials via chemical vapor deposition. Chemistry of Materials, 2020. 32(24): p. 10321-10347.
67. Ye, Z., et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-micro letters, 2023. 15(1): p. 38.
68. Cun, H., et al., Wafer-scale MOCVD growth of monolayer MoS 2 on sapphire and SiO 2. Nano Research, 2019. 12: p. 2646-2652.
69. Li, H., et al., From bulk to monolayer MoS2: evolution of Raman scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.
70. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700.
71. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700.
72. Iqbal, M.W., et al., A review on Raman finger prints of doping and strain effect in TMDCs. Microelectronic Engineering, 2020. 219: p. 111152.
73. Mak, K.F., et al., Tightly bound trions in monolayer MoS2. Nature materials, 2013. 12(3): p. 207-211.
74. McCreary, K.M., et al., A-and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers. Apl Materials, 2018. 6(11).
75. Lin, Y., et al., Dielectric screening of excitons and trions in single-layer MoS2. Nano letters, 2014. 14(10): p. 5569-5576.
76. Golovynskyi, S., et al., Exciton and trion in few-layer MoS2: Thickness-and temperature-dependent photoluminescence. Applied Surface Science, 2020. 515: p. 146033. |