博碩士論文 111328017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.16.1.194
姓名 陳廷睿(CHEN,TING-RUI)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 低溫成長條件下利用金屬有機化學氣相沉積法於氧化矽基板上合成高品質二硫化鉬
(Low-temperature condition growth high-quality Molybdenum Disulfide on Silicon Dioxide substrate by Metal Organic Chemical Vapor Deposition)
相關論文
★ 捲對捲乾轉印方法於製作高效能石墨烯透明導電膜之研究★ 利用氟素高分子摻雜於提升石墨烯導電膜的效能 與穩定性之研究
★ 以石墨烯混成陶瓷粉末於製作高導熱及高電阻之聚亞醯胺薄膜的研究★ 以奈米銅催化輔助控制多孔石墨烯之孔隙結構及其於超級電容之研究
★ 研究超潔淨石墨烯之場效電晶體 於提升基因感測器之效能★ 利用氟化自組裝膜輔助轉印石墨烯薄膜及其於場效電晶體特性之研究
★ 多孔石墨烯邊界態之氮改質於超級電容的效能研究★ 石墨烯場效應電晶體應用於DNA生醫感測晶片之元件整合和效能評估的研究
★ 添加氟化石墨烯於奈米高分子複合材料以增強防 腐性能★ 石墨烯功能性改質於鋰離子電池負極材料 之研究
★ 紫外光輻照於輔助轉印高品質石墨烯之研究★ 氟化石墨烯複合結構於鋰離子電池的人工固態電解質界面膜之研究
★ 超高附著力之氟化石墨烯薄膜於固態磨潤之研究★ 真空壓印於二維材料轉印製程之研究
★ 氟化石墨烯複合結構在鋰金屬電池中的雙功能陽極之機制探討★ 氟化石墨烯複合材料塗層於多功能披覆之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-7-1以後開放)
摘要(中) 本研究針對後端製程中對低熱預算的需求進行探討,這在半導體技術中至關重要,因為現代電子元件對溫度的敏感性較高,尤其是在製程中已經存在的其他材料容易受到高溫影響。而傳統高溫化學氣相沉積法(CVD)要求高溫條件成長出高品質二硫化鉬,對後端製程的兼容性構成挑戰,因此低溫沉積技術具有重要的應用價值。
本研究採用了金屬有機化學氣相沉積法(MOCVD),其優勢在於可以在相對較低的溫度下操作,同時確保較好的材料品質。選用的前驅物是六羰基鉬(Mo(CO)6)和氣體硫化氫(H2S)能夠在較低溫度下反應,減少對基材的熱損傷。基板方面則是選用半導體元件中的矽基板,既能保持製程相容性,並符合當前半導體製程的需求。
為了進一步提高二硫化鉬(MoS2)的結晶品質,本研究引入氯化鈉(NaCl)作為促進劑。氯化鈉的添加不僅能促進二硫化鉬的成核,還能有效增大晶粒尺寸,進而提升薄膜的結晶品質。氯化物的揮發性在低溫下有助於抑制晶界的形成,使MoS2層的連續性和均勻性大幅提升,這對於應用於高性能電子元件的二維材料來說至關重要。
此外,本研究在成長過程中還會調整關鍵的參數,如前驅物的流量、氣體的壓力和沉積時間,並針對不同的基材溫度區進行實驗優化。透過這些細緻的工藝控制,能夠實現更均勻的二硫化鉬沉積,並改善材料的光學和電學性能。進一步的晶體結構和光學分析,如拉曼光譜和光致發光光譜,將用來評估材料的晶體品質、層數和均勻性,這些結果將為將來低熱預算的製程技術提供有力支持。
目前實驗已經在356°C至414°C的溫度條件下,優化了參數進行沉積,在40分鐘內成功於經過食人魚溶液清洗過的矽基板上,成長出40~73 nm厚度的雙層二硫化鉬。透過光致發光光譜儀的測試,確認了其結晶品質,能達到62.59 meV的能隙寬度。此外,本研究也對不同前處理條件下的基板進行了成長測試,並藉由調整基板的擺放方式與前處理,成功提升了二硫化鉬的品質和均勻性,達到高品質和高均勻性的MoS2薄膜。這些優化成果為未來二維材料的工業應用提供了關鍵的技術參考。
摘要(英) This study explores the demand for low thermal budgets in back-end processes, which is crucial in semiconductor technology due to the high-temperature sensitivity of modern electronic devices. Other materials already present in the process are particularly prone to damage from high temperatures. Traditional high-temperature chemical vapor deposition (CVD) requires elevated temperatures to grow high-quality molybdenum disulfide (MoS2), posing challenges for compatibility with back-end processes. Therefore, low-temperature deposition techniques hold significant application value.
In this study, metal-organic chemical vapor deposition (MOCVD) was adopted for its ability to operate at relatively lower temperatures while ensuring high material quality. The precursors chosen were molybdenum hexacarbonyl (Mo(CO)6) and hydrogen sulfide (H2S), which can react at lower temperatures, reducing thermal damage to the substrate. Silicon wafers, commonly used in semiconductor devices, were selected as the substrate, ensuring process compatibility and meeting the requirements of current semiconductor processes.
To further improve the crystallinity of MoS2, sodium chloride (NaCl) was introduced as a promoter. The addition of NaCl not only promotes the nucleation of MoS2 but also effectively increases the grain size, thereby enhancing the crystallinity of the thin films. The volatility of chlorides at low temperatures helps suppress the formation of grain boundaries, significantly improving the continuity and uniformity of the MoS2 layers. This is crucial for applying 2D materials in high-performance electronic devices.
Additionally, this study adjusted key parameters during the growth process, such as precursor flow rate, gas pressure, and deposition time, while optimizing the experiment for different substrate temperature zones. Through these meticulous process controls, more uniform MoS2 deposition was achieved, improving the material’s optical and electrical properties. Further analysis of crystal structure and optical properties, including Raman spectroscopy and photoluminescence (PL) spectroscopy, will be used to evaluate the crystallinity, number of layers, and uniformity of the MoS2, providing robust support for future low thermal budget process technologies.
Currently, the experiment has optimized the deposition process at temperatures ranging from 356°C to 414°C. Within 40 minutes, a bilayer MoS2 film with a thickness of 40~73 nm was successfully grown on piranha solution-cleaned silicon substrates. The crystallinity was confirmed through photoluminescence spectroscopy, with a measured bandgap energy of 62.59 meV. Moreover, the study conducted growth tests on substrates with different pre-treatment conditions. By adjusting the substrate placement and pre-treatment methods, the quality and uniformity of the MoS2 were successfully enhanced, achieving high-quality, highly uniform MoS2 films. These optimized results provide critical technical references for the future industrial applications of 2D materials.
關鍵字(中) ★ 低熱預算
★ 二硫化鉬
★ 二維材料
★ 鹽類促進劑
關鍵字(英)
論文目次 學位論文授權書 i
學位論文延後公開申請書 ii
指導教授推薦書 iii
口試委員審定書 iii
摘要 v
Abstract vi
致謝 viii
目錄 ix
圖目錄 xii
表目錄 xv
第一章 緒論 1
1-1 研究背景 1
第二章 文獻回顧與研究動機 5
2-1 二維材料的發展與特性 5
2-2 過渡金屬二硫化物 6
2-3 二硫化鉬特性與應用 9
2-4 二硫化鉬之製備方法 11
2-4-1 化學氣相沉積法 12
2-4-2 物理氣相沉積法 13
2-4-3 原子層沉積法 14
2-5 目前挑戰與解決方法 16
2-5-1 金屬有機化學氣相沉積法 17
2-5-2 鹽類促進劑 18
2-5-3 基板選擇 20
2-6 研究動機 22
第三章 研究架構與流程 23
3-1 研究架構 23
3-2 實驗藥品及儀器 24
3-2-1實驗藥品 24
3-2-2實驗設備與原理 24
3-3實驗流程 27
3-3-1 基板預處理 27
3-3-2 金屬有機化學氣相沉積與生長條件之設定 29
3-3-3 二硫化鉬之材料分析 33
3-3-3-1拉曼光譜分析 33
3-3-3-2光致發光分析 35
第四章 結果與討論 37
4-1 鉬壓調整 37
4-2 鉬流量調整 39
4-3 鉬溫調整 41
4-4 鹽類促進物的添加 43
4-5 生長溫度的調整 44
4-6 再現性測試 46
4-7 硫化氫流量調整 48
4-8 鉬溫調整&垂直擺放基板 51
4-9 載流氣體流量調整&丙酮前處理測試 54
4-10 成長時間與二硫化鉬晶粒生長關係 55
4-11 其他-不同基板前處理比較 59
4-12 丙酮清洗試片 61
4-13 可控性點陣列生長 63
第五章 結論與未來工作 69
5-1 結論 70
5-2 未來工作 71
參考資料 72
參考文獻 1. Becker, J.A. and J.N. Shive, The transistor -: A new semiconductor amplifier (Reprinted from <i>The Electrical Engineer</i>, vol 68, pg 215-221, 1949). Proceedings of the Ieee, 1999. 87(8): p. 1389-1396.
2. IC Insights. (2022). Integrated circuit (IC) unit shipments worldwide from 1980 to 2022 (in billions). Statista. https://www.statista.com/statistics/277241/worldwide-ic-unit-shipments-since-1980/.
3. Moore, G.E., Cramming more components onto integrated circuits (Reprinted from Electronics, pg 114-117, April 19, 1965). Proceedings of the Ieee, 1998. 86(1): p. 82-85.
4. Zhang, Q.Z., et al., New structure transistors for advanced technology node CMOS ICs. National Science Review, 2024. 11(3): p. 18.
5. Khanna, V.K. and V.K. Khanna, Short-channel effects in MOSFETs. Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies, 2016: p. 73-93.
6. Wann, C.H., et al., A comparative study of advanced MOSFET concepts. IEEE Transactions on Electron Devices, 1996. 43(10): p. 1742-1753.
7. Troutman, R.R., VLSI limitations from drain-induced barrier lowering. IEEE Journal of Solid-State Circuits, 1979. 14(2): p. 383-391.
8. Kim, K.S., et al., The future of two-dimensional semiconductors beyond Moore’s law. Nature Nanotechnology, 2024. 19(7): p. 895-906.
9. Akinwande, D., et al., Graphene and two-dimensional materials for silicon technology. Nature, 2019. 573(7775): p. 507-518.
10. Liu, Y., et al., Promises and prospects of two-dimensional transistors. Nature, 2021. 591(7848): p. 43-53.
11. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
12. Kimouche, A., et al., Ultra-narrow metallic armchair graphene nanoribbons. Nature communications, 2015. 6(1): p. 10177.
13. Yu, W., et al., Anomalous doping effect in black phosphorene using first-principles calculations. Physical Chemistry Chemical Physics, 2015. 17(25): p. 16351-16358.
14. Lee, K.H., et al., Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano letters, 2012. 12(2): p. 714-718.
15. Wang, Y., et al., Electrochemical control of photoluminescence in two-dimensional MoS2 nanoflakes. ACS nano, 2013. 7(11): p. 10083-10093.
16. Kim, Y., et al., Atomic-Layer-Deposition-Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. Advanced Materials, 2021. 33(47): p. 33.
17. Wang, Y.W., et al., Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects. Nano Research, 2022. 15(4): p. 3675-3694.
18. Shahzad, F., et al., Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science, 2016. 353(6304): p. 1137-1140.
19. Sun, K., J. Chen, and X. Yan, The future of memristors: Materials engineering and neural networks. Advanced Functional Materials, 2021. 31(8): p. 2006773.
20. Garg, M., et al., Different types and intense classification of 2D materials. Advanced Applications of 2D Nanostructures: Emerging Research and Opportunities, 2021: p. 11-28.
21. Dong, R. and I. Kuljanishvili, Progress in fabrication of transition metal dichalcogenides heterostructure systems. Journal of Vacuum Science & Technology B, 2017. 35(3).
22. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 2012. 7(11): p. 699-712.
23. Manzeli, S., et al., 2D transition metal dichalcogenides. Nature Reviews Materials, 2017. 2(8): p. 1-15.
24. Han, S.A., R. Bhatia, and S.-W. Kim, Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Convergence, 2015. 2: p. 1-14.
25. Yang, R., et al., 2D transition metal dichalcogenides for photocatalysis. Angewandte Chemie, 2023. 135(13): p. e202218016.
26. Lee, E., et al., Direct CVD growth of a graphene/MoS2 heterostructure with interfacial bonding for two-dimensional electronics. Chemistry of Materials, 2020. 32(11): p. 4544-4552.
27. Wang, P., et al., Mechanism of alkali metal compound-promoted growth of monolayer MoS2: eutectic intermediates. Chemistry of Materials, 2019. 31(3): p. 873-880.
28. Yu, Z., et al., Analyzing the carrier mobility in transition?metal dichalcogenide MoS2 field?effect transistors. Advanced Functional Materials, 2017. 27(19): p. 1604093.
29. Pumera, M. and A.H. Loo, Layered transition-metal dichalcogenides (MoS2 and WS2) for sensing and biosensing. TrAC Trends in Analytical Chemistry, 2014. 61: p. 49-53.
30. Pumera, M., Z. Sofer, and A. Ambrosi, Layered transition metal dichalcogenides for electrochemical energy generation and storage. Journal of Materials Chemistry A, 2014. 2(24): p. 8981-8987.
31. Velusamy, D.B., et al., Flexible transition metal dichalcogenide nanosheets for band-selective photodetection. Nature communications, 2015. 6(1): p. 8063.
32. Donarelli, M. and L. Ottaviano, 2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene. Sensors, 2018. 18(11): p. 3638.
33. Antunes, F.P.N., et al., Van der Waals interactions and the properties of graphite and 2H-, 3R-and 1T-MoS2: A comparative study. Computational Materials Science, 2018. 152: p. 146-150.
34. Thomas, N., et al., 2D MoS<sub>2</sub>: structure, mechanisms, and photocatalytic applications. Materials Today Sustainability, 2021. 13: p. 16.
35. Stephenson, T., et al., Lithium ion battery applications of molybdenum disulfide (MoS 2) nanocomposites. Energy & Environmental Science, 2014. 7(1): p. 209-231.
36. Kumar, R., et al., MoS2?based nanomaterials for room?temperature gas sensors. Advanced Materials Technologies, 2020. 5(5): p. 1901062.
37. Toh, R.J., et al., 3R phase of MoS 2 and WS 2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017. 53(21): p. 3054-3057.
38. Lembke, D., S. Bertolazzi, and A. Kis, Single-Layer MoS<sub>2</sub> Electronics. Accounts of Chemical Research, 2015. 48(1): p. 100-110.
39. Ottaviano, L., et al., Mechanical exfoliation and layer number identification of MoS2 revisited. 2D Materials, 2017. 4(4): p. 045013.
40. Sun, J., et al., Synthesis methods of two-dimensional MoS2: A brief review. Crystals, 2017. 7(7): p. 198.
41. Baptista, A., et al., Sputtering physical vapour deposition (PVD) coatings: A critical review on process improvement and market trend demands. Coatings, 2018. 8(11): p. 402.
42. Zeng, H., et al., Recent developments in CVD growth and applications of 2D transition metal dichalcogenides. Frontiers of Physics, 2023. 18(5): p. 48.
43. Shen, P.-C., et al., CVD technology for 2-D materials. IEEE Transactions on Electron Devices, 2018. 65(10): p. 4040-4052.
44. Van Der Zande, A.M., et al., Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature materials, 2013. 12(6): p. 554-561.
45. Lee, Y.-H., et al., Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. arXiv preprint arXiv:1202.5458, 2012.
46. Chen, W., et al., Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. Journal of the American Chemical Society, 2015. 137(50): p. 15632-15635.
47. Zhang, J., et al., Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Materials Today, 2020. 40: p. 132-139.
48. Mitterer, C., PVD and CVD hard coatings, in Comprehensive hard materials. 2014. p. 449-467.
49. Schalk, N., M. Tkadletz, and C. Mitterer, Hard coatings for cutting applications: Physical vs. chemical vapor deposition and future challenges for the coatings community. Surface and Coatings Technology, 2022. 429: p. 127949.
50. Kim, Y., et al., Atomic?Layer?Deposition?Based 2D Transition Metal Chalcogenides: Synthesis, Modulation, and Applications. Advanced Materials, 2021. 33(47): p. 2005907.
51. George, S.M., Atomic layer deposition: an overview. Chemical reviews, 2010. 110(1): p. 111-131.
52. Tan, L.K., et al., Atomic layer deposition of a MoS 2 film. Nanoscale, 2014. 6(18): p. 10584-10588.
53. Briggs, N., et al., A roadmap for electronic grade 2D materials. 2D Materials, 2019. 6(2): p. 022001.
54. Zhang, K.A., et al., Low-Temperature Vapor-Phase Growth of 2D Metal Chalcogenides. Small, 2024. 20(19): p. 20.
55. Thean, A., et al. Low-thermal-budget BEOL-compatible beyond-silicon transistor technologies for future monolithic-3D compute and memory applications. in 2022 International Electron Devices Meeting (IEDM). 2022. IEEE.
56. Choudhury, T.H., et al., Epitaxial growth of two-dimensional layered transition metal dichalcogenides. Annual Review of Materials Research, 2020. 50(1): p. 155-177.
57. Kumar, V.K., et al., Role of Surface Processes in Growth of Monolayer MoS2: Implications for Field-Effect Transistors. ACS Applied Nano Materials, 2021. 4(7): p. 6734-6744.
58. Kim, H., et al., Suppressing Nucleation in Metal-Organic Chemical Vapor Deposition of MoS<sub>2</sub> Monolayers by Alkali Metal Halides. Nano Letters, 2017. 17(8): p. 5056-5063.
59. Lei, J., et al., Salt-assisted MoS2 growth: Molecular mechanisms from the first principles. Journal of the American Chemical Society, 2022. 144(16): p. 7497-7503.
60. Zhang, K., et al., Considerations for utilizing sodium chloride in epitaxial molybdenum disulfide. ACS applied materials & interfaces, 2018. 10(47): p. 40831-40837.
61. Tang, A., et al., Toward Low-Temperature Solid-Source Synthesis of Monolayer MoS<sub>2</sub>. Acs Applied Materials & Interfaces, 2021. 13(35): p. 41866-41874.
62. People, R. and J. Bean, Calculation of critical layer thickness versus lattice mismatch for Ge x Si1? x/Si strained?layer heterostructures. Applied Physics Letters, 1985. 47(3): p. 322-324.
63. Deleporte, E., et al., Evolution with temperature of the strain state of GaN thin layers grown on different substrates. physica status solidi (b), 1999. 216(1): p. 713-717.
64. Ji, Q., et al., Metallic vanadium disulfide nanosheets as a platform material for multifunctional electrode applications. Nano letters, 2017. 17(8): p. 4908-4916.
65. Liu, K.-K., et al., Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano letters, 2012. 12(3): p. 1538-1544.
66. Qin, B., et al., Substrates in the synthesis of two-dimensional materials via chemical vapor deposition. Chemistry of Materials, 2020. 32(24): p. 10321-10347.
67. Ye, Z., et al., Emerging MoS2 wafer-scale technique for integrated circuits. Nano-micro letters, 2023. 15(1): p. 38.
68. Cun, H., et al., Wafer-scale MOCVD growth of monolayer MoS 2 on sapphire and SiO 2. Nano Research, 2019. 12: p. 2646-2652.
69. Li, H., et al., From bulk to monolayer MoS2: evolution of Raman scattering. Advanced Functional Materials, 2012. 22(7): p. 1385-1390.
70. Lee, C., et al., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano, 2010. 4(5): p. 2695-2700.
71. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700.
72. Iqbal, M.W., et al., A review on Raman finger prints of doping and strain effect in TMDCs. Microelectronic Engineering, 2020. 219: p. 111152.
73. Mak, K.F., et al., Tightly bound trions in monolayer MoS2. Nature materials, 2013. 12(3): p. 207-211.
74. McCreary, K.M., et al., A-and B-exciton photoluminescence intensity ratio as a measure of sample quality for transition metal dichalcogenide monolayers. Apl Materials, 2018. 6(11).
75. Lin, Y., et al., Dielectric screening of excitons and trions in single-layer MoS2. Nano letters, 2014. 14(10): p. 5569-5576.
76. Golovynskyi, S., et al., Exciton and trion in few-layer MoS2: Thickness-and temperature-dependent photoluminescence. Applied Surface Science, 2020. 515: p. 146033.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2024-11-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明