博碩士論文 111523021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.117.250.210
姓名 黃性鈞(Hsing-Chun Huang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 可調式兩階段VVC畫面內預測編碼
(Adaptive Two-Stage for VVC Intra Prediction Coding)
相關論文
★ 10Gb/s MM XFP光收發模組設計與實現★ 資訊產品自動化測試之研究
★ 高電流密度鰭式氮化鎵高電子遷移率電晶體研究★ 電子郵件及壓縮檔案解碼之研究
★ 渦輪碼在光學記錄系統上之應用★ 離散餘弦轉換硬體架構之研究
★ 動態影像之錯誤隱藏研究★ 即時性無失真壓縮編碼之研究
★ 類神經網路在手寫數字辨識之研究★ 事後機率演算法則在資料儲存系統之研究
★ 紅外線傳輸協定及通道之研究★ 低密度同位元檢查碼在數位資料儲存系統之研究
★ 一種新型的JPEG2000竄改偵測與還原技術★ 即時性無失真壓縮之研究
★ 混合快速模式決策演算法之研究★ 光學記錄MEPR2通道系統之時序恢復探討與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-12-5以後開放)
摘要(中) 在當今網路和科技快速發展的時代,大眾對高解析度影像品質的要求日益提高。然而,高解析度影像所帶來的大量資料需要更高效的壓縮技術來處理。H.266/VVC 引入了多項先進技術,例如方形與矩形編碼樹單元(Coding Unit, CU)的多類型劃分,以及碼率失真最佳化(Rate-Distortion Optimization, RDO),這些技術在提升壓縮效率的同時,也顯著增加了編碼計算的複雜度。本論文結合傳統特徵法以及機器學習和深度學習技術,先使用支持向量機、卷積神經網路和隨機森林分類器,應用於VVC的編碼單元的劃分。我們的兩階段VVC 首先在第一階段使用支持向量機及和卷積神經網路對方形編碼單元進行劃分,並在第二階段使用隨機森林分類器進一步處理矩形編碼單元。然而,研究發現卷積神經網路在預測劃分模式時,存在著部分MT劃分模式被遺漏的問題,導致編碼性能下降。為解決此問題,我們提出了Sobel Operator 的判別式,用以偵測影像的紋理方向並輔助劃分決策。實驗結果顯示,第一階段使用Sobel Operator後,BDBR僅上升0.42%,但編碼時間節省達26.48%;兩階段VVC 平均BDBR僅上升0.95%,但編碼時間節省達61.1%。與原本兩階段VVC 相比,我們的改進有效提升了編碼性能,並且僅略微增加一點編碼時間。接著我們進一步優化演算法,將支持向量機的決策值當作可調式閥值的判別基準,透過可調式閥值的設計,我們能有效減少編碼單元進入卷積神經網路的次數,從而提前終止編碼單元的劃分。可調式閥值的設計允許使用者根據不同的應用需求,在影像品質與編碼時間之間靈活權衡,從而實現高效的壓縮性能表現。
摘要(英) In today′s era of rapid advancements in networks and technology, the demand for high-resolution image quality continues to grow. However, the massive data generated by high-resolution images requires more efficient compression technologies to handle. H.266/VVC introduces numerous advanced techniques, such as multi-type division of square and rectangular Coding Units (CUs) and Rate-Distortion Optimization (RDO). While these innovations improve compression efficiency, they significantly increase the computational complexity of encoding.
This paper combines traditional feature-based methods with machine learning and deep learning techniques, utilizing Support Vector Machines (SVM), Convolutional Neural Networks (CNN), and Random Forest Classifiers in the CU division of VVC. Our two-stage VVC first employs SVM and CNN to divide square CUs in the first stage and then uses Random Forest Classifiers to further process rectangular CUs in the second stage. However, studies have revealed that CNN has issues with missing certain MT division patterns when predicting division modes, leading to a decline in encoding performance.
To address this issue, we propose a Sobel Operator-based criterion to detect texture directions in images and assist in division decisions. Experimental results show that incorporating the Sobel Operator in the first stage leads to a BDBR increase of only 0.42%, while saving 26.48% of encoding time. The two-stage VVC achieves an average BDBR increase of just 0.95% while saving 61.1% of encoding time. Compared to the original two-stage VVC, our improvements significantly enhance encoding performance with only a slight increase in computational time.
Furthermore, we optimize the algorithm by using the decision values of the SVM as the basis for adjustable thresholds. Through the design of adjustable thresholds, we effectively reduce the number of CUs entering the CNN, thereby terminating the CU division process earlier. The adjustable thresholds allow users to flexibly balance image quality and encoding time according to different application needs, achieving highly efficient compression performance.
關鍵字(中) ★ 多功能影像編碼
★ 支持向量機
★ 卷積神經網路
★ 編碼單元
★ 畫面內預測
關鍵字(英) ★ Versatile Video Coding
★ Support Vector Machine
★ Convolutional Neural Network
★ Coding Unit
★ Intra Prediction
論文目次 論文摘要 i
Abstract iii
致謝 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1.1 研究動機與目的 1
1.2 論文架構 2
1.3 多功能影像編碼(VVC)簡介 2
1.4 VVC編碼架構介紹 3
1.4.1 碼率失真代價函數(RD cost) 4
1.4.2 編碼單元(Coding Unit, CU) 5
1.4.3 多類型樹(QTMT)架構 7
1.4.4 畫面內編碼預測(Intra Predict)介紹 8
1.4.5 量化參數(Quantization Parameter, QP) 12
1.5 機器學習( Machine Learning) 14
1.5.1 支持向量機(Support Vector Machine) 15
1.5.2 隨機森林(Random Forest) 18
1.6 深度學習(Deep Learning) 22
1.6.1 類神經網路(Neural Network) 23
1.6.2 深度神經網路(Deep Neural Network) 23
1.6.3 卷積神經網路(Convolutional Neural Network) 25
第二章 相關文獻回顧 28
2.1 H.265/HEVC減少編碼單元計算複雜度演算法之回顧 28
2.1.1 Computational Complexity Reduction for HEVC Intra Prediction with SVM 28
2.1.2 CNN-based CU Partition for HEVC Intra Prediction 35
2.2 H.266/VVC減少編碼單元計算複雜度之研究 38
2.2.1 Fast VVC Intra Coding by Skipping Redundant Coding Block Structures and Unnecessary Directional Partition 38
2.2.2 Fast CU Partition for H.266/VVC Intra Prediction with CNN and Random Forest 43
第三章 兩階段VVC編碼性能探討 48
3.1 兩階段VVC編碼與Tissier[1]編碼架構介紹 48
3.2 兩階段VVC編碼之性能分析 61
3.2.1 兩階段VVC與Tissier[1]性能比較與分析 62
3.2.2 兩階段VVC只使用SVM與TOP-4性能比較與分析 65
3.2.3 兩階段VVC第一階段使用SVM-CNN與TOP-3性能比較與分析 73
3.2.4 兩階段VVC與TOP-2及TOP-1性能比較與分析 78
第四章 改進可調式兩階段VVC畫面內編碼演算法則 81
4.1 Sobel Operator應用於第一階段編碼演算法則 81
4.1.1 Sobel Operator在VVC之統計分析與閥值設定 82
4.1.2 加入Sobel Operator之性能分析 95
4.2 應用可調式閥值於第一階段之演算法則 99
4.2.1 編碼單元之可調式閥值設計 99
4.2.2 加入可調式閥值之性能分析 106
4.2.3 整體演算法則性能比較與分析 111
第五章 結論與未來展望 116
參考文獻 117
參考文獻 [1] A.Tissier et al., “Machine Learning Based Efficient QT-MTT Partitioning Scheme for VVC Intra Encoders”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 33, no. 8, pp. 4279-4293, Aug 2023.
[2] C. H Chung, “Distributed Video Coding On Versatile Video Coding”, National Central University, Master Thesis, Jan 2023.
[3] X. Shen and L. Yu, “CU splitting early termination based on weighted SVM,” EURASIP Journal on Image and Video Processing, vol. 1, pp. 1, 2013.
[4] R. H. Gweon, Y.-L Lee, and J. Lim. Early termination of CU encoding to reduce HEVC complexity, JVTVC-F045, ITU-T/ISO/IEC Joint Collaborative Team on Video Coding (JCT-VC). Jul 2011.
[5] F. Duanmu, Z. Ma, and Y. Wang, “Fast mode and partition decision using machine learning for intra-frame coding in HEVC screen content coding extension,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 6, no. 4, pp. 517–531, Dec 2016.
[6] Tao Zhang,Ming-Ting Sun,Debin Zhao,Wen Gao, “Fast Intra-Mode and CU Size Decision for HEVC”, IEEE Transactions on Circuits and Systems for Video Technology ,Vol. 27, Aug 2017.
[7] Jie-Jay Wang, Yin yi Lin ,“Computation Reduction of HEVC Intra Prediction using combined SVM and CNN”, National Central University, Master Thesis, Jan 2020.
[8] Han-Yuan Hsu, Yin yi Lin, “Low Computational Complexity, High Coding Efficiency Intra Prediction for HEVC,” Master Thesis, National Central University, Jun 2016.
[9] Hao-Chiun Wang, Yin yi Lin ,“CNN-based CU Partition for HEVC Intra Prediction”, National Central University, Master Thesis, July 2020.
[10] P. H Chen, “Fast CU Partition for H.266/VVC Intra Prediction with CNN and Random Forest”, National Central University, Master Thesis, Jan 2023.
[11] S.J Cai, “Reduction of computation complexity for HEVC intra prediction with support vector machine,” National Central University, Master Thesis, Jun 2017.
[12] X. Zhang et al., “Fast Algorithm for CU Split in H.266/VVC Intra Based on Texture Information”, 2023 3rd International Conference on Intelligent Communications and Computing (ICC), Nov 2023.
[13] J. Chen et al., “Fast QTMT Partition Decision Algorithm in VVC Intra Coding based on Variance and Gradient”, 2019 IEEE Visual Communications and Image Processing (VCIP), Dec 2019.
[14] H. Liu et al., “Cross-Block Difference Guided Fast CU Partition for VVC Intra Coding”, 2021 International Conference on Visual Communications and Image Processing (VCIP), Dec 2021.
[15] T. Li, M. Xu, X. Deng, “ A deep convolutional neural network approach for complexity reduction on intra-mode HEVC”, 2017 IEEE International Conference on Multimedia and Expo (ICME).
[16] D. T. Dang-Nguyen, C. Pasquini, V. Conotter, G. Boato, RAISE – A Raw Images Dataset for Digital Image Forensics, ACM Multimedia Systems, Portland, Oregon, March 2015.
[17] Z. Zhang et al., “Fast VVC Intra Coding by Skipping Redundant Coding Block Structures and Unnecessary Directional Partition”, 2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval (MIPR), Aug 2022.
[18] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, 2001.
[19] W. Ren et al., “An IBP-CNN Based Fast Block Partition For Intra Prediction”, 2019 Picture Coding Symposium (PCS), Nov 2019.
[20] T. Li et al, “DeepQTMT: A Deep Learning Approach for Fast QTMT-Based CU Partition of Intra-Mode VVC”, IEEE, pp. 5377-5390, May 2021.
[21] C. Ni et al. “High Efficiency Intra CU Partition and Mode Decision Method for VVC” IEEE Access, Vol.10, pp. 77759-77771, Jul 2022.
指導教授 林銀議(Yin-Yi Lin) 審核日期 2024-12-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明