博碩士論文 111523027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.119.110.152
姓名 羅奕恆(Yi-Heng Lo)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 基於Zaddoff-Chu序列之多輸入多輸出低軌道衛星通訊系統聯合載波頻率偏移與通道估測研究
(Joint Carrier Frequency Offset and Channel Estimation with Zaddoff-Chu Sequences for MIMO LEO Satellite Communication Systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-17以後開放)
摘要(中) 傳統地面網路會受到地形因素等影響,導致其難以達成全球性的覆蓋,為了增強網路覆蓋範圍,以衛星通訊系統搭配地面網路的技術逐漸成為現代趨勢。但低軌道衛星相對於地面終端設備的高移動速度造成嚴重的都卜勒偏移,進而也影響了延遲估測,這使精確的頻率偏移估測變得更加重要。因此本研究於多輸入多輸出(MIMO)低軌道衛星(LEO)通訊系統,利用Zadoff-Chu序列的相關性計算得出峰值,隨後運用這些峰值進行延遲、都卜勒偏移和通道響應的估測,最後通過迭代方法更精確尋找最大峰值,從而提升載波頻率偏移估測的準確性。
模擬結果顯示,本文的估測方法可以成功地適用於多輸入多輸出(MIMO)的低軌衛星(LEO)通訊系統中,充分展現多輸入多輸出(MIMO)技術在降低漏檢率(Miss Detection Rate)的優勢且能夠在不同系統配置下達到良好的表現。
摘要(英) Traditional terrestrial networks are affected by geographical factors, making it difficult to achieve global coverage. To enhance network coverage, the combination of satellite communication systems with terrestrial networks is gradually becoming a modern trend. However, the high relative velocity of low earth orbit (LEO) satellites in relation to ground terminal devices causes severe Doppler shifts, which in turn affect delay estimation, making precise frequency offset estimation even more critical. Therefore, this study focuses on a multi-input multi-output (MIMO) LEO satellite communication system, utilizing the correlation calculations of Zadoff-Chu sequences to obtain peak values. These peak values are then used for joint estimation of delay, Doppler shift, and channel response. Finally, an iterative method is employed to more accurately identify the maximum peak value, thereby improving the precision of carrier frequency offset estimation.
Simulation results show that the estimation method proposed in this paper is successfully applicable to MIMO LEO satellite communication systems, fully demonstrating the advantages of MIMO technology in reducing the Miss Detection Rate (MDR) and achieving good performance close under different system configurations.
關鍵字(中) ★ 低軌道衛星
★ 多輸入多輸出
★ 載波頻率偏移
關鍵字(英) ★ LEO
★ MIMO
★ Carrier Frequency Offset
論文目次 論文摘要 i
Abstract ii
致謝 iii
Contents iv
List of Figures v
List of Table vi
Chapter 1. Introduction 1
1.1 Satellite Communication 1
1.2 MIMO LEO Systems 3
1.3 Preamble 5
1.4 Zaddoff-Chu Sequence 7
1.5 Organization 10
1.6 Abbreviations 10
1.7 Notation 12
Chapter 2. System Model 14
2.1 Transmitter 14
2.2 Channel Model 20
2.3 Receiver 21
Chapter 3. Proposed CFO and Channel Estimation Scheme 23
3.1 Iterative Fractional Frequency Offset Compensation 24
3.2 Fractional Frequency Offset Estimation 27
3.3 Delay and Integer Frequency Offset Estimation 30
3.4 Carrier Frequency Offset Estimation 35
3.5 Channel Estimation 36
3.6 Frequency-Domain Equalizer 37
3.7 Procedure of Proposed Algorithm 39
Chapter 4. Preamble Detection Method 41
4.1 Preamble Detection Mechanism 41
4.2 Detection Threshold Setting 43
4.3 Miss Detection Evaluation 45
Chapter 5. Simulation Results 46
Chapter 6. Conclusion 58
References 59
參考文獻 [1] F. Rinaldi, H. L. Maattanen, J. Torsner, S. Pizzi, S. Andreev, A. Iera, Y. Koucheryavy, and G. Araniti, "Non-Terrestrial Networks in 5G & Beyond: A Survey," IEEE Access, vol. 8, pp. 165178-165200, 2020.
[2] A. Guidotti, A. Vanelli-Coralli, M. E. Jaafari, N. Chuberre, J. Puttonen, V. Schena, G. Rinelli, and S. Cioni, "Role and Evolution of Non-Terrestrial Networks Toward 6G Systems," IEEE Access, vol. 12, pp. 55945-55963, 2024.
[3] T. Darwish, G. K. Kurt, H. Yanikomeroglu, M. Bellemare, and G. Lamontagne, "LEO Satellites in 5G and Beyond Networks: A Review From a Standardization Perspective," IEEE Access, vol. 10, pp. 35040-35060, 2022.
[4] A. Guidotti, A. Vanelli-Coralli, M. Conti, S. Andrenacci, S. Chatzinotas, N. Maturo, B. Evans, A. Awoseyila, A. Ugolini, T. Foggi, L. Gaudio, N. Alagha, and S. Cioni, "Architectures and Key Technical Challenges for 5G Systems Incorporating Satellites," IEEE Transactions on Vehicular Technology, vol. 68, no. 3, pp. 2624-2639, 2019.
[5] S. Chen, Y. C. Liang, S. Sun, S. Kang, W. Cheng, and M. Peng, "Vision, Requirements, and Technology Trend of 6G: How to Tackle the Challenges of System Coverage, Capacity, User Data-Rate and Movement Speed," IEEE Wireless Communications, vol. 27, no. 2, pp. 218-228, 2020.
[6] O. Kodheli, E. Lagunas, N. Maturo, S. K. Sharma, B. Shankar, J. F. M. Montoya, J. C. M. Duncan, D. Spano, S. Chatzinotas, S. Kisseleff, J. Querol, L. Lei, T. X. Vu, and G. Goussetis, "Satellite Communications in the New Space Era: A Survey and Future Challenges," IEEE Communications Surveys & Tutorials, vol. 23, no. 1, pp. 70-109, 2021.
[7] U. Gustavsson, P. Frenger, C. Fager, T. Eriksson, H. Zirath, F. Dielacher, C. Studer, A. Parssinen, R. Correia, J. N. Matos, D. Belo, and N. B. Carvalho, "Implementation Challenges and Opportunities in Beyond-5G and 6G Communication," IEEE Journal of Microwaves, vol. 1, no. 1, pp. 86-100, 2021.
[8] C. Hofmann, K. U. Storek, R. T. Schwarz, and A. Knopp, "Spatial MIMO over satellite: A proof of concept," in 2016 IEEE International Conference on Communications (ICC), 22-27 May 2016 2016, pp. 1-6.
[9] P. D. Arapoglou, K. Liolis, M. Bertinelli, A. Panagopoulos, P. Cottis, and R. D. Gaudenzi, "MIMO over Satellite: A Review," IEEE Communications Surveys & Tutorials, vol. 13, no. 1, pp. 27-51, 2011.
[10] L. You, K. X. Li, J. Wang, X. Gao, X. G. Xia, and B. Ottersten, "Massive MIMO Transmission for LEO Satellite Communications," IEEE Journal on Selected Areas in Communications, vol. 38, no. 8, pp. 1851-1865, 2020.
[11] I. Ali, N. Al-Dhahir, and J. E. Hershey, "Doppler characterization for LEO satellites," IEEE Transactions on Communications, vol. 46, no. 3, pp. 309-313, 1998.
[12] P. R. King and S. Stavrou, "Capacity Improvement for a Land Mobile Single Satellite MIMO System," IEEE Antennas and Wireless Propagation Letters, vol. 5, pp. 98-100, 2006.
[13] D. Goto, H. Shibayama, F. Yamashita, and T. Yamazato, "LEO-MIMO Satellite Systems for High Capacity Transmission," in 2018 IEEE Global Communications Conference (GLOBECOM), 9-13 Dec. 2018 2018, pp. 1-6.
[14] H. Chougrani, S. Kisseleff, W. A. Martins, and S. Chatzinotas, "NB-IoT Random Access for Nonterrestrial Networks: Preamble Detection and Uplink Synchronization," IEEE Internet of Things Journal, vol. 9, no. 16, pp. 14913-14927, 2022.
[15] W. Wu and W. Wang, "Preamble Structure and Timing Advance Method for Satellite IoT," IEEE Wireless Communications Letters, vol. 13, no. 4, pp. 1088-1092, 2024.
[16] M. Hua, M. Wang, W. Yang, X. You, F. Shu, J. Wang, W. Sheng, and Q. Chen, "Analysis of the Frequency Offset Effect on Random Access Signals," IEEE Transactions on Communications, vol. 61, no. 11, pp. 4728-4740, 2013.
[17] W. Wang, T. Chen, R. Ding, G. Seco-Granados, L. You, and X. Gao, "Location-Based Timing Advance Estimation for 5G Integrated LEO Satellite Communications," IEEE Transactions on Vehicular Technology, vol. 70, no. 6, pp. 6002-6017, 2021.
[18] J. Zhu, Y. Sun, and M. Peng, "Timing Advance Estimation in Low Earth Orbit Satellite Networks," IEEE Transactions on Vehicular Technology, vol. 73, no. 3, pp. 4366-4382, 2024.
[19] C. Li, H. Ba, H. Duan, Y. Gao, and J. Wu, "A two-step time delay difference estimation method for initial random access in satellite LTE system," in 16th International Conference on Advanced Communication Technology, 16-19 Feb. 2014 2014, pp. 10-13.
[20] L. Zhen, Y. Wang, K. Yu, G. Lu, Z. Mumtaz, and W. Wei, "Reliable Uplink Synchronization Maintenance for Satellite-Ground Integrated Vehicular Networks: A High-Order Statistics-Based Timing Advance Update Approach," IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 2, pp. 2097-2110, 2023.
[21] L. Zhen, H. Qin, B. Song, R. Ding, X. Du, and M. Guizani, "Random Access Preamble Design and Detection for Mobile Satellite Communication Systems," IEEE Journal on Selected Areas in Communications, vol. 36, no. 2, pp. 280-291, 2018.
[22] L. Zhen, T. Sun, G. Lu, K. Yu, and R. Ding, "Preamble Design and Detection for 5G Enabled Satellite Random Access," IEEE Access, vol. 8, pp. 49873-49884, 2020.
[23] H. Chen, P. Wang, S. Li, S. Lin, Z. Wang, and C. Fang, "A Novel Preamble Design for 5G Enabled LEO Non-Terrestrial Networks," in GLOBECOM 2022 - 2022 IEEE Global Communications Conference, 4-8 Dec. 2022 2022, pp. 680-686.
[24] M. Agiwal, J. Liu, and H. Jin, "Dynamic Preamble Resource Distribution for Random Access in 5G New Radio Systems," IEEE Transactions on Mobile Computing, vol. 22, no. 5, pp. 2645-2660, 2023.
[25] T. A. Khan and X. Lin, "Random Access Preamble Design for 3GPP Non-terrestrial Networks," in 2021 IEEE Globecom Workshops (GC Wkshps), 7-11 Dec. 2021 2021, pp. 1-5.
[26] T. K. Lee and K. Yang, "Partial-Period Correlations of Zadoff–Chu Sequences and Their Relatives," IEEE Transactions on Information Theory, vol. 60, no. 9, pp. 5791-5802, 2014.
[27] G. Malik Muhammad Usman, L. Sungeun, and M. Xiaoli, "Robust synchronization for OFDM employing Zadoff-Chu sequence," in 2012 46th Annual Conference on Information Sciences and Systems (CISS), 21-23 March 2012 2012, pp. 1-6.
[28] M. Hua, M. Wang, K. W. Yang, and K. J. Zou, "Analysis of the Frequency Offset Effect on Zadoff–Chu Sequence Timing Performance," IEEE Transactions on Communications, vol. 62, no. 11, pp. 4024-4039, 2014.
[29] J. D. Roth, D. A. Garren, and R. C. Robertson, "Integer Carrier Frequency Offset Estimation in OFDM with Zadoff-Chu Sequences," in ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 6-11 June 2021 2021, pp. 4850-4854.
[30] J. Tao and L. Yang, "Improved Zadoff-Chu Sequence Detection in the Presence of Unknown Multipath and Carrier Frequency Offset," IEEE Communications Letters, vol. 22, no. 5, pp. 922-925, 2018.
[31] J. Tao, L. Yang, and X. Han, "Enhanced Carrier Frequency Offset Estimation Based on Zadoff–Chu Sequences," IEEE Communications Letters, vol. 23, no. 10, pp. 1862-1865, 2019.
[32] T. Feng, R. Ren, and Y. Yang, "Generalized Symmetric Zadoff-Chu Sequences for Enhanced Timing Advanced Estimation," in 2022 10th International Workshop on Signal Design and Its Applications in Communications (IWSDA), 1-5 Aug. 2022 2022, pp. 1-5.
[33] G. Cui, Y. He, P. Li, and W. Wang, "Enhanced Timing Advanced Estimation With Symmetric Zadoff-Chu Sequences for Satellite Systems," IEEE Communications Letters, vol. 19, no. 5, pp. 747-750, 2015.
[34] Z. Yang, R. Wang, Y. Jiang, and J. Li, "Joint Estimation of Velocity, Angle-of-Arrival and Range (JEVAR) Using a Conjugate Pair of Zadoff-Chu Sequences," IEEE Transactions on Signal Processing, vol. 69, pp. 6009-6022, 2021.
[35] Z. Zheng, D. Wang, L. Liu, B. Wang, and C. Sun, "Robust Random Access Preamble Detection Scheme for 5G Integrated LEO Satellite Communication Systems," in 2022 IEEE 22nd International Conference on Communication Technology (ICCT), 11-14 Nov. 2022 2022, pp. 463-467.
[36] C. Zhang, W. Cao, Z. Yang, K. Tian, and N. Zhang, "Random Access Preamble Design for Large Frequency Shift in Satellite Communication," in 2019 IEEE 2nd 5G World Forum (5GWF), 30 Sept.-2 Oct. 2019 2019, pp. 659-664.
[37] C. P. d. Amo and M. J. F.-G. Garcia, "Iterative Joint Estimation Procedure for Channel and Frequency Offset in Multi-Antenna OFDM Systems With an Insufficient Cyclic Prefix," IEEE Transactions on Vehicular Technology, vol. 62, no. 8, pp. 3653-3662, 2013.
[38] H. Hojatian, M. J. Omidi, H. Saeedi-Sourck, and A. Farhang, "Joint CFO and channel estimation in OFDM-based massive MIMO systems," in 2016 8th International Symposium on Telecommunications (IST), 27-28 Sept. 2016 2016, pp. 343-348.
[39] M. Caus, A. I. Perez-Neira, J. Bas, and L. Blanco, "New Satellite Random Access Preamble Design Based on Pruned DFT-Spread FBMC," IEEE Transactions on Communications, vol. 68, no. 7, pp. 4592-4604, 2020.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明