博碩士論文 111232009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.118.162.243
姓名 吳冠箴(Kuan-Chen Wu)  查詢紙本館藏   畢業系所 照明與顯示科技研究所
論文名稱 單像素成像結合散射介質的多光譜影像系統
(Multispectral Imaging System that Combines Scattering Medium and Single-Pixel Imaging)
相關論文
★ 非反掃描式平行接收之雙光子螢光超光譜顯微術★ 以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數
★ 雷射環狀模態及螢光生命週期於雙光子激發受激輻射耗損顯微術解析度提升之研究★ LASER光源暨LED在老鼠毛生長的低能量光治療比較分析
★ 應用線狀結構照明提升雙光子顯微鏡解析度★ 以同調結構照明顯微術進行散射樣本解析度之提升
★ 以雙光子螢光顯微及光譜系統進行葉子生長過程中微結構與光系統變化之研究★ 掃描式二倍頻結構照明顯微術
★ 小貓自泵相位共軛鏡於數位光學相位共軛與時間微分之研究★ 鏡像輔助斷層掃描相位顯微鏡
★ 以數位全像術重建多波長環狀光束之研究★ 相位共軛反射鏡用於散射介質中光學聚焦之研究
★ 雙光子螢光超光譜顯微術於多螢光生物樣本之研究★ 倍頻非螢光基態耗損超解析之顯微成像方法
★ 葉綠素雙光子螢光超光譜影像於光合作用研究之應用★ 雙光子掃描結構照明顯微術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-3-3以後開放)
摘要(中) 紅外光譜影像系統能提供物質分子組成的波長與二維空間資訊,因此在許多領域中被廣泛應用。然而,現行系統大多依賴陣列偵測器或空間掃描式干涉架構來取得光譜影像。這些方法面臨兩大挑戰:紅外光波段的陣列偵測器價格高昂,以及干涉技術架構易受環境擾動影響,這使得紅外光譜影像系統在生活應用與研究推廣上受到限制。
為了解決這些問題,本研究提出了一種單像素成像結合散射介質的多光譜影像系統。該系統利用散射介質將物體的空間與光譜資訊轉化為光斑圖像,並透過單像素成像技術進行記錄與重建。由於光斑圖像有著空間相關性與光譜去相關性的特性,因此系統可藉由反摺積技術成功重建物體影像。為了驗證系統可行性,系統目前先以可見光進行實驗,本研究目前成功以陣列相機拍攝到光斑並還原物體的光譜影像,並成功分離出不同波段的物體的光譜影像,在單像素的架構上已成功還原單色光物體的光譜影像,然而在多色光物體影像的還原中,影像輪廓清晰度仍不及單色光物體的影像。此外目前系統無法使還原影像的大小與原始物體達到1:1比例未來若能提升散射介質後的光強度,或調整系統架構與元件參數,增加影像放大率,將有助於提升結合散射介質的單像素多光譜影像系統(Single-pixel Multispectral Imaging System Based on Scattering Medium,以下簡稱SpMI-SS)的訊雜比與系統還原真實物體大小的能力。
摘要(英) Infrared spectral imaging systems provide wavelength and two-dimensional spatial information about the molecular composition of substances, making them widely used in various fields. However, current systems primarily rely on array detectors or spatial scanning interferometric architectures to obtain spectral images. These methods face two major challenges: the high cost of array detectors in the infrared wavelength range and the susceptibility of interferometric architectures to environmental disturbances. These limitations hinder the application of infrared spectral imaging systems in everyday life and their widespread adoption in research.
To address these challenges, this study proposes a multispectral imaging system combining single-pixel imaging with scattering media. The system utilizes scattering media to transform the spatial and spectral information of an object into speckle patterns, which are recorded and reconstructed using single-pixel imaging techniques. Due to the spatial correlation and spectral decorrelation characteristics of the speckle patterns, the system can successfully reconstruct object images through deconvolution techniques.
To validate the feasibility of the system, initial experiments were conducted using visible light. The study successfully captured speckle patterns with an array camera and reconstructed the spectral images of the objects. Additionally, the spectral images of objects at different wavelengths were effectively separated. The single-pixel imaging setup successfully reconstructed spectral images of monochromatic objects. However, when reconstructing multicolor objects, the image contours were less clear compared to those of monochromatic objects.
Future improvements in enhancing the light intensity after passing through scattering media or adjusting the system architecture and component parameters to increase the magnification factor will contribute to improving the signal-to-noise ratio (SNR) of the Single-pixel Multispectral Imaging System Based on Scattering Medium (SpMI-SS) and its ability to restore the true size of the original object.
關鍵字(中) ★ 單像素成像
★ 散射介質
★ 多光譜影像系統
關鍵字(英) ★ Single-pixel
★ Scattering Medium
★ Multispectral Imaging System
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 xi
一、緒論 1
1-1 研究動機與目的 1
1-2 文獻回顧與探討 2
1-2-1 紅外光譜影像實際應用 2
1-2-2 傳統多光譜影像系統 3
1-2-3 Fourier轉換光譜影像系統 5
1-2-4 單像素成像 5
1-2-5 單像素成像的光譜影像系統 6
1-2-6 單像素成像結合散射介質的多光譜影像系統 8
1-3 論文架構 9
二、實驗原理 10
2-1 散射介質和光譜影像重建 10
2-1-1 光斑的產生與特性 10
2-1-2 利用光斑重建光譜影像 11
2-2 單像素成像 12
2-2-1 取像流程 13
2-2-2 單像素影像重建 14
2-2-3 調制圖像的使用 16
三、研究方法 20
3-1 系統架構 20
3-1-1 SpMI-SS系統架構 20
3-2 系統元件的配合 22
3-2-1 CMOS、DMD、調制圖形三者像素大小的關係 22
3-2-2 放大率關係 23
3-3 校正系統 24
3-3-1 校正系統結合光斑光路系統 25
3-4 實驗流程 28
四、實驗結果 30
4-1 SpMI-SS系統校正 30
4-2 SpMI-SS系統 : CMOS端 31
4-2-1 重建單色光物體影像 31
4-2-2 記憶效應分析 33
4-2-3 不同大小的單色光物體所還原出的物體影像 34
4-2-4 重建多色光物體影像 36
4-3 SpMI-SS系統 : DMD端 42
4-3-1 還原單色光物體影像 42
4-3-2 不同大小的單色光物體所還原出的物體影像以及大小 45
4-3-3 還原多色光物體影像 49
五、結論 56
參考文獻 58
參考文獻 [1] G. Gauglitz and D. S. Moore, Handbook of spectroscopy. Wiley-Vch Weinheim, Germany, 2014.
[2] H.-Y. Huang, H.-T. Nguyen, T.-L. Lin, P. Saenprasarn, P.-H. Liu, and H.-C. Wang, "Identification of skin lesions by snapshot hyperspectral imaging," Cancers, vol. 16, no. 1, p. 217, 2024.
[3] T. H. Johansen et al., "Recent advances in hyperspectral imaging for melanoma detection," wiley interdisciplinary Reviews: computational statistics, vol. 12, no. 1, p. e1465, 2020.
[4] S. Kumar, C. Desmedt, D. Larsimont, C. Sotiriou, and E. Goormaghtigh, "Change in the microenvironment of breast cancer studied by FTIR imaging," Analyst, vol. 138, no. 14, pp. 4058-4065, 2013.
[5] S. K. Shree, V. Vijayarajan, B. S. Bama, and S. M. M. Roomi, "Milk Quality Inspection Using Hyperspectral Imaging," in 2023 International Conference on Signal Processing, Computation, Electronics, Power and Telecommunication (IConSCEPT), 25-26 May 2023 2023, pp. 1-6, doi: 10.1109/IConSCEPT57958.2023.10170710.
[6] R. Siche, R. Vejarano, V. Aredo, L. Velasquez, E. Saldana, and R. Quevedo, "Evaluation of food quality and safety with hyperspectral imaging (HSI)," Food Engineering Reviews, vol. 8, pp. 306-322, 2016.
[7] T. Adao et al., "Hyperspectral imaging: A review on UAV-based sensors, data processing and applications for agriculture and forestry," Remote sensing, vol. 9, no. 11, p. 1110, 2017.
[8] J.-H. Lee, H.-G. Yu, D.-J. Park, B. H. Park, and J. H. Kim, "Characterization of hazardous gases using an infrared hyperspectral imaging system," Instrumentation Science & Technology, vol. 43, no. 4, pp. 469-484, 2015.
[9] C. R. Nagaraja Rao and J. Chen, "Inter-satellite calibration linkages for the visible and near-infared channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11 spacecraft," International Journal of Remote Sensing, vol. 16, no. 11, pp. 1931-1942, 1995/07/20 1995, doi: 10.1080/01431169508954530.
[10] A. Shakun et al., "Fourier transform spectrometers for remote sensing of planetary atmospheres and surfaces," CEAS Space Journal, vol. 9, no. 4, pp. 399-409, 2017/12/01 2017, doi: 10.1007/s12567-017-0176-2.
[11] M. A. Faqeerzada et al., "Hyperspectral shortwave infrared image analysis for detection of adulterants in almond powder with one-class classification method," Sensors, vol. 20, no. 20, p. 5855, 2020.
[12] S. Sabbah, P. Rusch, J. Eichmann, J.-H. Gerhard, and R. Harig, "Remote sensing of gases by hyperspectral imaging: results of field measurements," in Electro-Optical Remote Sensing, Photonic Technologies, and Applications VI, 2012, vol. 8542: SPIE, pp. 593-600.
[13] Q. Li, X. He, Y. Wang, H. Liu, D. Xu, and F. Guo, "Review of spectral imaging technology in biomedical engineering: achievements and challenges," Journal of biomedical optics, vol. 18, no. 10, pp. 100901-100901, 2013.
[14] Y. Garini, I. T. Young, and G. McNamara, "Spectral imaging: principles and applications," Cytometry part a: the journal of the international society for analytical cytology, vol. 69, no. 8, pp. 735-747, 2006.
[15] J. E. Fowler, "Compressive pushbroom and whiskbroom sensing for hyperspectral remote-sensing imaging," in 2014 IEEE international conference on image processing (ICIP), 2014: IEEE, pp. 684-688.
[16] C.-C. Yu et al., "Quantitative spectroscopic imaging for noninvasive early cancer detection," Optics express, vol. 16, no. 20, pp. 16227-16239, 2008.
[17] G. ElMasry and D.-W. Sun, "Principles of hyperspectral imaging technology," in Hyperspectral imaging for food quality analysis and control: Elsevier, 2010, pp. 3-43.
[18] H.-T. Lim and V. M. Murukeshan, "Spatial-scanning hyperspectral imaging probe for bio-imaging applications," Review of Scientific Instruments, vol. 87, no. 3, 2016.
[19] T. Theophile, Infrared spectroscopy: Materials science, engineering and technology. BoD–Books on Demand, 2012.
[20] J. Striova, A. Dal Fovo, and R. Fontana, "Reflectance imaging spectroscopy in heritage science," La Rivista del Nuovo Cimento, vol. 43, pp. 515-566, 2020.
[21] PETER R. GRIFFITHS and J. A. d. HASETH, Fourier Transform Infrared Spectrometry Second Edition. 2007.
[22] A. Fadlelmoula, D. Pinho, V. H. Carvalho, S. O. Catarino, and G. Minas, "Fourier transform infrared (FTIR) spectroscopy to analyse human blood over the last 20 years: a review towards lab-on-a-chip devices," Micromachines, vol. 13, no. 2, p. 187, 2022.
[23] G. M. Gibson, S. D. Johnson, and M. J. Padgett, "Single-pixel imaging 12 years on: a review," Optics express, vol. 28, no. 19, pp. 28190-28208, 2020.
[24] W. Zhao, L. Gao, A. Zhai, and D. Wang, "Comparison of common algorithms for single-pixel imaging via compressed sensing," Sensors, vol. 23, no. 10, p. 4678, 2023.
[25] D. L. Graff and S. P. Love, "Real-time matched-filter imaging for chemical detection using a DMD-based programmable filter," in Emerging Digital Micromirror Device Based Systems and Applications V, 2013, vol. 8618: SPIE, pp. 137-146.
[26] S. Jin et al., "Hyperspectral imaging using the single-pixel Fourier transform technique," Scientific reports, vol. 7, no. 1, p. 45209, 2017.
[27] Z. Li, J. Suo, X. Hu, C. Deng, J. Fan, and Q. Dai, "Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation," Scientific Reports, vol. 7, no. 1, p. 41435, 2017.
[28] Y. Jauregui-Sanchez, P. Clemente, J. Lancis, and E. Tajahuerce, "Single-pixel imaging with Fourier filtering: application to vision through scattering media," Optics letters, vol. 44, no. 3, pp. 679-682, 2019.
[29] Z.-D. Liu et al., "Fourier Single-Pixel Imaging Via Arbitrary Illumination Patterns," Physical Review Applied, vol. 19, no. 4, p. 044025, 2023.
[30] A. Sandmeyer, M. Lachetta, H. Sandmeyer, W. Hubner, T. Huser, and M. Muller, "DMD-based super-resolution structured illumination microscopy visualizes live cell dynamics at high speed and low cost," BioRxiv, p. 797670, 2019.
[31] M.-J. Sun and J.-M. Zhang, "Single-pixel imaging and its application in three-dimensional reconstruction: a brief review," Sensors, vol. 19, no. 3, p. 732, 2019.
[32] Q. Yi, L. Z. Heng, L. Liang, Z. Guangcan, C. F. Siong, and Z. Guangya, "Hadamard transform-based hyperspectral imaging using a single-pixel detector," Optics Express, vol. 28, no. 11, pp. 16126-16139, 2020/05/25 2020, doi: 10.1364/OE.390490.
[33] P. Klocek, Handbook of infrared optical materials. CRC Press, 2017.
[34] L. Bian et al., "Multispectral imaging using a single bucket detector," Scientific reports, vol. 6, no. 1, p. 24752, 2016.
[35] S. K. Sahoo, D. Tang, and C. Dang, "Single-shot multispectral imaging with a monochromatic camera," Optica, vol. 4, no. 10, 2017, doi: 10.1364/optica.4.001209.
[36] E. Edrei and G. Scarcelli, "Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media," Scientific reports, vol. 6, no. 1, p. 33558, 2016.
[37] O. Katz, P. Heidmann, M. Fink, and S. Gigan, "Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations," Nature Photonics, vol. 8, no. 10, pp. 784-790, 2014, doi: 10.1038/nphoton.2014.189.
[38] J. W. Goodman, Speckle phenomena in optics: theory and applications. Roberts and Company Publishers, 2007.
[39] J. Bertolotti, E. G. Van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, "Non-invasive imaging through opaque scattering layers," Nature, vol. 491, no. 7423, pp. 232-234, 2012.
[40] I. I. Freund, M. Rosenbluh, and S. Feng, "Memory effects in propagation of optical waves through disordered media," Phys Rev Lett, vol. 61, no. 20, pp. 2328-2331, Nov 14 1988, doi: 10.1103/PhysRevLett.61.2328.
[41] S. K. Sahoo, D. Tang, and C. Dang, "Multiplexing and de-multiplexing with scattering media for large field of view and multispectral imaging," in Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXV, 2018, vol. 10499: SPIE, pp. 165-172.
[42] H. Zhuang, H. He, X. Xie, and J. Zhou, "High speed color imaging through scattering media with a large field of view," Scientific reports, vol. 6, no. 1, p. 32696, 2016.
[43] J. W. Goodman, Introduction to Fourier optics. Roberts and Company publishers, 2005.
[44] T. Luo, R. Fan, Z. Chen, X. Wang, and D. Chen, "Deblurring streak image of streak tube imaging lidar using Wiener deconvolution filter," Optics Express, vol. 27, no. 26, pp. 37541-37551, 2019.
[45] F. Rousset, "Single-pixel imaging: Development and applications of adaptive methods," Universite de Lyon; Politecnico di Milano, 2017.
[46] 李柏寬, "基於單像素成像與散射介質的單照式多光譜影像系統," in 光電科學與工程學系(國立中央大學,2022).
[47] S. Gunasheela and H. Prasantha, "Compressed sensing for image compression: survey of algorithms," in Emerging Research in Computing, Information, Communication and Applications: ERCICA 2018, Volume 2: Springer, 2019, pp. 507-517.
[48] Y. Wang, J. Yang, W. Yin, and Y. Zhang, "A new alternating minimization algorithm for total variation image reconstruction," SIAM Journal on Imaging Sciences, vol. 1, no. 3, pp. 248-272, 2008.
[49] C. Li, W. Yin, H. Jiang, and Y. Zhang, "An efficient augmented Lagrangian method with applications to total variation minimization," Computational Optimization and Applications, vol. 56, pp. 507-530, 2013.
[50] K. M. Czajkowski, A. Pastuszczak, and R. Koty?ski, "Real-time single-pixel video imaging with Fourier domain regularization," Optics Express, vol. 26, no. 16, pp. 20009-20022, 2018/08/06 2018, doi: 10.1364/OE.26.020009.
[51] Z. Zhang, X. Wang, G. Zheng, and J. Zhong, "Hadamard single-pixel imaging versus Fourier single-pixel imaging," Optics Express, vol. 25, no. 16, pp. 19619-19639, 2017.
[52] K. J. Horadam, Hadamard matrices and their applications. Princeton university press, 2012.
[53] L. Lopez-Garcia, W. Cruz-Santos, A. Garcia-Arellano, P. Filio-Aguilar, J. A. Cisneros-Martinez, and R. Ramos-Garcia, "Efficient ordering of the Hadamard basis for single pixel imaging," Optics Express, vol. 30, no. 8, pp. 13714-13732, 2022.
[54] P. G. Vaz, D. Amaral, L. Requicha Ferreira, M. Morgado, and J. Cardoso, "Image quality of compressive single-pixel imaging using different Hadamard orderings," Optics express, vol. 28, no. 8, pp. 11666-11681, 2020.
[55] W.-K. Yu, "Super sub-Nyquist single-pixel imaging by means of cake-cutting Hadamard basis sort," Sensors, vol. 19, no. 19, p. 4122, 2019.
[56] M. Edgar, S. Johnson, D. Phillips, and M. Padgett, "Real-time computational photon-counting LiDAR," Optical Engineering, vol. 57, no. 3, pp. 031304-031304, 2018.
[57] F. Soldevila, P. Clemente, E. Tajahuerce, N. Uribe-Patarroyo, P. Andres, and J. Lancis, "Computational imaging with a balanced detector," Scientific Reports, vol. 6, no. 1, p. 29181, 2016.
[58] R. C. Gonzalez, Digital image processing. Pearson education india, 2009.
[59] J. S. Lim, Two-dimensional signal and image processing. Prentice-Hall, Inc., 1990.
指導教授 陳思妤 審核日期 2025-3-4
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明