博碩士論文 110552021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.218.195.15
姓名 饒珮以(Pei-Yi Jao)  查詢紙本館藏   畢業系所 資訊工程學系在職專班
論文名稱 整合MIAT方法論與大型語言模型於系統設計:以指紋比對系統為案例研究
(Integration of MIAT Methodology and Large Language Models for System Design:A Case Study of Fingerprint Matching System)
相關論文
★ 整合GRAFCET虛擬機器的智慧型控制器開發平台★ 分散式工業電子看板網路系統設計與實作
★ 設計與實作一個基於雙攝影機視覺系統的雙點觸控螢幕★ 智慧型機器人的嵌入式計算平台
★ 一個即時移動物偵測與追蹤的嵌入式系統★ 一個固態硬碟的多處理器架構與分散式控制演算法
★ 基於立體視覺手勢辨識的人機互動系統★ 整合仿生智慧行為控制的機器人系統晶片設計
★ 嵌入式無線影像感測網路的設計與實作★ 以雙核心處理器為基礎之車牌辨識系統
★ 基於立體視覺的連續三維手勢辨識★ 微型、超低功耗無線感測網路控制器設計與硬體實作
★ 串流影像之即時人臉偵測、追蹤與辨識─嵌入式系統設計★ 一個快速立體視覺系統的嵌入式硬體設計
★ 即時連續影像接合系統設計與實作★ 基於雙核心平台的嵌入式步態辨識系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-2-1以後開放)
摘要(中) 本研究以指紋特徵比對系統為驗證案例,探討結合 MIAT 方法論系統設計與大型語言模型的系統設計和高階合成方法。MIAT 方法論著重在系統的階層式模組化的架構設計,以及演算法的離散事件建模,最後合成可維護、可擴展的系統程式碼。在方法論的最後階段,我們引進大型語言模型生成每個離散事件狀態所驅動所需要的程式碼。為了驗證這個方法,我們設計了指紋特徵比對系統的階層模組,包括旋轉排除模組、線段方向排除模組及特徵比對模組。實驗部分,基於FVC2004 指紋資料集進行系統性能測試,透過不同比對演算法如Minutia 與FLANN 的比較,驗證了系統在準確性與運行效率上的表現。實驗結果顯示在模組化設計下,各模組的獨立性和可靠性得到了充分驗證。大型語言模型在程式碼生成中的應用,提升了開發效率並降低人為錯誤的風險。此研究不僅對於指紋辨識技術的進一步發展具有啟發性,也提供了一種創新的系統設計方法,適用於其他高複雜度的軟體開發領域。
摘要(英) This research uses a fingerprint feature matching system as a validation case to explore system design and high-level synthesis methods that combine MIAT methodology with Large Language Models (LLMs). The MIAT methodology focuses on hierarchical modular architecture design and discrete event modeling of algorithms, ultimately synthesizing maintainable and scalable system code. In the final stage of the methodology, we introduce LLMs to generate the necessary code driven by each discrete event state. To validate this approach, we designed hierarchical modules for the fingerprint feature matching system, including rotation elimination module, segment direction elimination module, and feature matching module. For experimentation, we conducted system performance testing based on the FVC2004 fingerprint dataset, comparing different matching algorithms such as Minutia and FLANN to validate the system′s performance in terms of accuracy and operational efficiency. The experimental results demonstrated that under the modular design, the independence and reliability of each module were thoroughly validated. The application of LLMs in code generation improved development efficiency and reduced the risk of human error. This research not only provides insights for further development of fingerprint recognition technology but also offers an innovative system design method applicable to other complex software development domains.
關鍵字(中) ★ MIAT 方法論
★ 指紋比對
★ 離散事件建模
★ 高階合成
★ 大型語言模型
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 ix
第一章、 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究架構 3
第二章、 指紋比對技術回顧 4
2.1 指紋特徵 4
2.1.1 全域特徵 4
2.1.2 局部特徵 5
2.1.3 次級特徵 6
2.2 指紋比對演算法 8
2.2.1 Image correlation 演算法比對 9
2.2.2 Phase 演算法比對 12
2.2.3 Skeleton 演算法比對 14
2.2.4 Minutia 演算法比對 17
2.2.5 FLANN 演算法比對 22
第三章、 可重構指紋特徵比對系統設計 25
3.1 MIAT方法論 25
3.1.1 IDEF0 階層式模組化設計 26
3.1.2 Grafcet 離散事件建模 27
3.2 LLM輔助生成 Grafcet action程式碼 29
3.3 可重構指紋特徵比對系統架構設計 31
3.2.1 指紋比對模組(A4) 32
3.2.2 線段旋轉排除模組(A41) 33
3.2.3 線段方向排除模組(A42) 34
3.2.4 特徵點比對模組(A43) 35
3.4 離散事件建模 36
3.3.1 指紋特徵比對離散事件模型 37
3.3.2 線段旋轉排除離散事件模型 38
3.3.3 線段方向排除離散事件模型 39
3.3.4 特徵點比對離散模型 40
第四章、 可重構指紋特徵比對實驗 41
4.1 實驗環境 41
4.2 資料描述 41
4.3 基於LLM 的Grafcet框架生成方法:實驗與應用分析 43
4.3.1 LLM 模型 43
4.3.2 Grafcet Action 生成流程 43
4.3.3 生成結果驗證 45
4.4 可重構指紋特徵比對驗證 49
4.4.1 指紋特徵點擷取 49
4.4.2 Minutia 比對實驗 51
4.4.3 FLANN 比對實驗 54
4.5 結果比較 57
4.6 實驗結果分析 60
第五章、 結論 61
5.1 結論 61
5.2 未來展望 62
參考文獻 63
附錄一 生成Grafcet 對話流程 72
附錄二 可重構指紋比對 Grafcet Action 75
參考文獻 [1] A. K. Jain, A. Ross and S. Prabhakar, “An introduction to biometric recognition,”
IEEE Transactions on Circuits and Systems for Video Technology, vol. 14, no. 1,
pp. 4-20, Jan. 2004.
[2] K. Han and X. Li, “Application of Partial Differential Equation Method in
Fingerprint Image Enhancement,” 2021 IEEE/ACIS 19th International Conference
on Software Engineering Research, Management and Applications (SERA),
Kanazawa, Japan, pp. 33-38, 2021.
[3] E. N. Bifari and L. A. Elrefaei, “Automated Fingerprint Identification System based
on weighted feature points matching algorithm,” 2014 International Conference on
Advances in Computing, Communications and Informatics (ICACCI), Delhi, India,
pp. 2212-2217, 2014.
[4] V. Kakani, V. H. Nguyen, B. P. Kumar, H. Kim, V. R. Pasupuleti, “A critical review
on computer vision and artificial intelligence in food industry,” Journal of
Agriculture and Food Research, vol. 2, no. 100033, 2020.
[5] A. K. Jain, S. S. Arora, K. Cao, L. Best-Rowden and A. Bhatnagar, “Fingerprint
Recognition of Young Children,” IEEE Transactions on Information Forensics and
Security, vol. 12, no. 7, pp. 1501-1514, July 2017.
[6] J. Qi, Z. Shi, X. Zhao and Y. Wang, “A novel fingerprint matching method based
on the Hough transform without quantization of the Hough space,” Third
International Conference on Image and Graphics (ICIG′04), pp. 262-265,
December 2004.
[7] D. Lee, K. Choi and J. Kim, “A robust fingerprint matching algorithm using local
alignment,” 2002 International Conference on Pattern Recognition, vol. 3, pp. 803-
806, August 2002.
[8] P. D. Gutierrez, M. Lastra, F. Herrera and J. M. Benitez, “A High Performance
Fingerprint Matching System for Large Databases Based on GPU,” IEEE
Transactions on Information Forensics and Security, vol. 9, no. 1, pp. 62-71, Jan.
2014.
[9] D. Peralta, S. Garcia, J. M. Benitez, F. Herrera, “Minutiae-based fingerprint
matching decomposition: Methodology for big data frameworks,” Information
Sciences, vol. 408, pp. 198-212, 2017.
[10] M.Y. Lin, S.H. Hsieh, C.H. Chen, C.H. Lin, "High-Performance Chip Design with
Parallel Architecture for Magnetic Field Imaging System," IEEE Transactions on
Instrumentation and Measurement, vol. 73, no. 9502313, pp. 1-13, 2024.
[11] J. Li, G. Li, Y. Li and Z. Jin, “Structured chain-of-thought prompting for code
generation,
” 2023, arXiv:2305.06599.
[12] L. Murr, M. Grainger, D. Gao, “Testing LLMs on Code Generation with Varying
Levels of Prompt Specificity,” 2023, arXiv:2311.07599.
[13] C. C. Hsieh, C. Y. Liu, P. Y. Wu, A. P. Jeng, R. G. Wang, C. C. Chou, “Building
information modeling services reuse for facility management for semiconductor
fabrication plants,” Automation in Construction, vol. 102, pp. 270-287, 2019.
[14] Z. Xu, F Xi, L Liu, and L. Chen, “A Method for Design of Modular
Reconfigurable Machine Tools,” Machines, vol. 5, no. 1, 2017.
[15] O. David, J. C. Ascough, W. Lloyd, T. R. Green, K. W. Rojas, G.H. Leavesley,
L.R. Ahuja, “A software engineering perspective on environmental modeling
framework design: The Object Modeling System,” Environmental Modelling &
Software, vol. 39, pp. 201-213, 2013.
[16] G. Fylaktopoulos, M. Skolarikis, I. Papadopoulos, G. Goumas, A. Sotiropoulos,
I. Maglogiannis, “A distributed modular platform for the development of cloud based applications,” Future Generation Computer Systems, vol. 78, no. 1, pp. 127-
141, 2018.
[17] J. Wang, L. Cao, X. Luo, Z. Zhou, J. Xie, A. Jatowt, Y. Cai, “Enhancing Large
Language Models for Secure Code Generation: A Dataset-driven Study on
Vulnerability Mitigation,” 2023, arXiv:2310.16263.
[18] V. J. Rathod, N. C. Iyer and Meena S M, “A survey on fingerprint biometric
recognition system,” 2015 International Conference on Green Computing and
Internet of Things (ICGCIoT), Greater Noida, India, pp. 323-326, 2015.
[19] J. Bohne and V. Despiegel, “Fingerprint skeleton matching based on local
descriptor,” 2009 IEEE 3rd International Conference on Biometrics:
Theory,Applications, and Systems, Washington, DC, USA, pp. 1-6, 2009.
[20] C.H. Chen, C.S. An, C.Y. Chen, “Fingerprint Quality Assessment Based on
Texture and Geometric Features,
” Journal of Imaging Science and
Technology, Journal of Imaging Science and Technology, vol.64, no.4, pp. 40403-
1-40403-7(7), Jul. 2020.
[21] C.H. Chen, C.Y. Chen, and T.M. Hsu, “Singular Points Detection in Fingerprints
Based on Poincare Index and Local Binary Patterns,
” Journal of Imaging Science
and Technology, vol. 63, no.3, pp.030401-1-7, Jun. 2019.
[22] S. Bakheet and A. Al-Hamadi, “Robust hand gesture recognition using multiple
shape-oriented visual cues,” J Image Video Proc, vol. 26, pp. 1-18, 2021.
[23] Kalyani Mali and Samayita Bhattacharya, “Fingerprint Recognition Using Global
and Local Structures,” International Journal on Computer Science and
Engineering, vol. 3, no. 1, pp. 161-172, Jan. 2011.
[24] D. Petrovska-Delacretaz, G. Chollet, and B. Dorizzi. Guide to Biometric
Reference Systems and Performance Evaluation. Springer, Dordrecht, 2009. 3.
[25] S. Bakheet and A. Al-Hamadi, “A framework for instantaneous driver drowsiness
detection based on improved HOG features and naive Bayesian
classification,” Brain Sci., vol. 11, no. 2, pp. 240, Feb. 2021.
[26] V. Gudkov and D. Lepikhova, “Fingerprint Model Based on Fingerprint Image
Topology and Ridge Count Values,” 2018 Global Smart Industry Conference
(GloSIC), Chelyabinsk, Russia, pp. 1-5, 2018.
[27] C. C. Liao and C. T. Chiu, “Fingerprint recognition with ridge features and
minutiae on distortion,” 2016 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), Shanghai, China, pp. 2109-2113, 2016.
[28] H. Choi, H. K. Choi and J. Kim, “Fingerprint Matching Incorporating Ridge
Features With Minutiae,” IEEE Transactions on Information Forensics and
Security, vol. 6, no. 2, pp. 338-345, 2011.
[29] C.H. Chen, C.T. Liu, “Person Re-Identification Microservice over Artificial
Intelligence Internet of Things Edge Computing Gateway,
” Electronics, vol.10,
no.18, pp. 2264, 2021.
[30] A. K. Jain, J. Feng and K. Nandakumar, “Fingerprint Matching,” Computer, vol.
43, no. 2, pp. 36-44, Feb. 2010.
[31] D. Peralta et al., “A survey on fingerprint minutiae-based local matching for
verification and identification: Taxonomy and experimental evaluation,”
Information Sciences, vol. 315, pp. 67-87, Sep. 2015.
[32] K. N. Win, K. Li, J. Chen, P. Fournier-Viger and K. Li, ”Fingerprint classification
and identification algorithms for criminal investigation: A survey, “ Future
Generation Computer Systems, vol. 110, pp. 758-771, 2020.
[33] H. Wu, Q. Liu and X. Liu, “A review on deep learning approaches to image
classification and object segmentation,” Comput. Mater. Continua, vol. 1, no. 2, pp.
1-5, 2018.
[34] B. Liu, Z. Li, et al. “Fingerprint reconstruction and recognition based on the three-
dimensional structure of fingertip skin,” 5th Optics Young Scientist Summit (OYSS
2022), vol. 12448, 2022.
[35] A. Mishra, S. Dehuri, “A Novel Hybrid FLANN-PSO Technique for Real Time
Fingerprint Classification,” Medico-Legal Update, vol. 19, no. 2, pp. 740-746,
2019.
[36] Y. Zheng and P. Zheng, “Image Matching Based on Harris-Affine Detectors and
Translation Parameter Estimation by Phase Correlation,” 2019 IEEE 4th
International Conference on Signal and Image Processing (ICSIP), Wuxi, China,
pp. 106-111, 2019.
[37] S. Insankeovilay, P. Prasarn and S. Choomchuay, “Fingerprint matching with
cross correlation and minutiae scores,” The 4th 2011 Biomedical Engineering
International Conference, Chiang Mai, Thailand, pp. 174-177, 2012.
[38] D. Maltoni, D. Maio, A. Jain and S. Prabhakar, Handbook of Fingerprint
Recognition, USA, NY, New York:Springer-Verlag, 2009.
[39] K. Ito, A. Morita, T. Aoki, T. Higuchi, H. Nakajima and K. Kobayashi, “A
fingerprint recognition algorithm using phase-based image matching for low-
quality fingerprints,” IEEE International Conference on Image Processing 2005,
Genova, Italy, pp. 11-33, 2005.
[40] J. Feng, Z. Ouyang, A. Cai, “Fingerprint matching using ridges,” Pattern
Recognition, vol. 39, no. 11, pp. 2131-2140, 2006.
[41] L. Sha, F. Zhao, X. Tang, “Minutiae-based Fingerprint Matching Using Subset
Combination,” ICPR, vol. 4 pp. 566-569, 2006.
[42] ANSI-INCITS 378-2004, “Information Technology - Finger Minutiae Format for
Data Interchange,” 2004.
[43] ANSI/NIST-ITL 1-2007, “Data Format for the Interchange of Fingerprint, Facial,
Other Biometric Information,” 2007.
[44] J. Bohne and V. Despiegel, “Fingerprint skeleton matching based on local
descriptor,” 2009 IEEE 3rd International Conference on Biometrics:
Theory,Applications, and Systems, Washington, DC, USA, pp. 1-6, 2009.
[45] K. Nirmalakumari, H. Rajaguru and P. Rajkumar, “Efficient Minutiae Matching
Algorithm for Fingerprint Recognition,” 2019 International Conference on
Advances in Computing and Communication Engineering (ICACCE),
Sathyamangalam, India, pp. 1-5, 2019.
[46] K. Singh, K. Kaur and A. Sardana, “Fingerprint feature extraction,” Int. J. Comput.
Sci. Technol., vol. 2, pp. 237-241, 2011.
[47] J. Yin, S. Pan, X. Li, S. Yu, Y. Xue and J. Zhou, “Research on Fingerprint
Recognition Algorithm Based on Minutiae Matching Pairs,” 2023 3rd
International Conference on Electronic Information Engineering and Computer
(EIECT), Shenzhen, China, pp. 484-493, 2023.
[48] I. Kova?, P. Marak, “Openfinger: Towards a combination of discriminative power
of fingerprints and finger vein patterns in multimodal biometric system, “ Tatra
Mountains Mathematical Publications, vol. 77, no. 1, pp. 109-138, 2020.
[49] V. Vijayan and P. Kp, “FLANN Based Matching with SIFT Descriptors for
Drowsy Features Extraction,” 2019 Fifth International Conference on Image
Information Processing (ICIIP), Shimla, India, 2019, pp. 600-605.
[50] Y.R. Wang, H.X. Li, and L.K. Wang, “Similar image retrieval using color
histogram in HSV space and SIFT descriptor with FLANN,” Foundations of
Intelligent Systems: Proceedings of the Eighth International Conference on
Intelligent Systems and Knowledge Engineering, vol. 277, pp.1085-1093, 2014.
[51] R. W. Gowandy, A. Halim, & H. Santoso, ”ELECTRONIC VOTING SYSTEM
BASED ON FINGERPRINT RECOGNITION AND RADIO FREQUENCY
IDENTIFICATION,” International Journal of Engineering Development And
Research, vol. 2, no. 4, pp. 3850-3854, 2017.
[52] M. Muja and D. G. Lowe, “Scalable Nearest Neighbor Algorithms for High
Dimensional Data,” in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 36, no. 11, pp. 2227-2240, Nov. 1, 2014.
[53] M. Muja and D. G. Lowe, “FLANN—Fast library for approximate nearest
neighbor user manual,” Proc. Int. Conf. Comput. Vis. Theory Appl. (VISAPP), pp.
1-29, Jan. 2013.
[54] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91-110, 2004.
[55] A. Mishra, N. Singh, S. R. Samal and S. Dash, “Biogeography Based Optimized
Hybrid Chebyshev FLANN for Fingerprint Classification,” 2023 1st International
Conference on Circuits, Power and Intelligent Systems (CCPIS), Bhubaneswar,
India, pp. 1-4, 2023.
[56] Y. T. Fang, and H. Rau. “Optimal consumer electronics product take-back time
with consideration of consumer value,
” Sustainability, vol. 9, no. 3, pp. 385, 2017.
[57] C.H. Chen, M.Y. Lin, X.C. Guo, “High-level Modeling and Synthesis of Smart
Sensor Networks for Industrial Internet of Things,” Computers & Electrical
Engineering, vol.61, pp.48–66, Jul. 2017.
[58] M.H. Temsah, A. Jamal, K. Alhasan, A.A. Temsah, K.H. Malki, “OpenAI o1-
Preview vs. ChatGPT in Healthcare: A New Frontier in Medical AI Reasoning,

Cureus, vol. 16, no. 10, pp.70640, 2024.
[59] A. Jaech, A. Kalai, et al., “OpenAI o1 System Card,” 2024, arXiv:2412.16720.
[60] Z. Liu, Y. Tang, X. Luo, Y. Zhou and L. F. Zhang, “No Need to Lift a Finger
Anymore? Assessing the Quality of Code Generation by ChatGPT,” in IEEE
Transactions on Software Engineering, vol. 50, no. 6, pp. 1548-1584, Jun. 2024.
[61] D. Huang, Q. Bu, J. Zhang, X. Xie, J. Chen, H. Cui, “Bias assessment and
mitigation in LLM-based code generation,” 2023, arXiv:2309.14345.
[62] Y.H. Liao, “Fingerprint Minutiae Detection and Extraction Algorithm with
Software High-Level Modeling and Synthesis,” M.S. thesis, Dept. of Computer
Science and Information Engineering, National Central Univ., Taoyuan, Taiwan,
2024. [Online]. Available:
https://ir.lib.ncu.edu.tw:444/thesis/view_etd.asp?URN=110552019&fileName=G
C110552019.pdf
[63] R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman and A. K. Jain, “Performance
evaluation of fingerprint verification systems,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 1, pp. 3-18, Jan. 2006.
[64] L. Murr, M. Grainger, D. Gao, “Testing LLMs on Code Generation with Varying
Levels of Prompt Specificity,
” 2023, arXiv: 2311.07599.
[65] A. Buscemi, “A comparative study of code generation using chatgpt 3.5 across 10
programming languages,
” 2023, arXiv:2308.04477.
[66] F. A. Sakib, S. H. Khan and A. H. M. R. Karim, “Extending the Frontier of
ChatGPT: Code Generation and Debugging,” 2024 International Conference on Electrical, Computer and Energy Technologies (ICECET, Sydney, Australia, pp.
1-6, 2024.
[67] R. Cappelli, M. Ferrara and D. Maltoni, “Minutiae-Based Fingerprint Matching,”
Cross Disciplinary Biometric Systems, vol. 37, pp. 117-150, 2012.
[68] B.Y. Satria, A. Bejo and R. Hidayat, “Fingerprint Enhancement using Iterative
Contextual Filtering for Fingerprint Matching,
” 2021 9th International Conference
on Information and Communication Technology (ICoICT), pp. 186-191, 2021.
指導教授 陳慶瀚(Ching-Han Chen) 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明