參考文獻 |
[1] Y. Zhang, X. Chen, Q. Ai, L. Yang, and W. B. Croft, “Towards Conversational Search and Recommendation: System Ask, User Respond,” in Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino Italy: ACM, Oct. 2018, pp. 177–186. doi: 10.1145/3269206.3271776.
[2] H. Zhou, M. Huang, Y. Liu, W. Chen, and X. Zhu, “EARL: Informative Knowledge-Grounded Conversation Generation with Entity-Agnostic Representation Learning,” in Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, M.-F. Moens, X. Huang, L. Specia, and S. W. Yih, Eds., Online and Punta Cana, Dominican Republic: Association for Computational Linguistics, Jan. 2021, pp. 2383–2395. doi: 10.18653/v1/2021.emnlp-main.184.
[3] V. Sadiri Javadi, M. Potthast, and L. Flek, “OpinionConv: Conversational Product Search with Grounded Opinions,” in Proceedings of the 24th Annual Meeting of the Special Interest Group on Discourse and Dialogue, S. Stoyanchev, S. Joty, D. Schlangen, O. Dusek, C. Kennington, and M. Alikhani, Eds., Prague, Czechia: Association for Computational Linguistics, Sep. 2023, pp. 66–76. doi: 10.18653/v1/2023.sigdial-1.6.
[4] Y. Feng et al., “A Large Language Model Enhanced Conversational Recommender System,” Aug. 11, 2023, arXiv: arXiv:2308.06212. Accessed: Jun. 06, 2024. [Online]. Available: http://arxiv.org/abs/2308.06212
[5] R. Li, S. Kahou, H. Schulz, V. Michalski, L. Charlin, and C. Pal, “Towards Deep Conversational Recommendations,” Mar. 04, 2019, arXiv: arXiv:1812.07617. Accessed: Jun. 06, 2024. [Online]. Available: http://arxiv.org/abs/1812.07617
[6] L. Murakhovs’ka, P. Laban, T. Xie, C. Xiong, and C.-S. Wu, “Salespeople vs SalesBot: Exploring the Role of Educational Value in Conversational Recommender Systems,” in Findings of the Association for Computational Linguistics: EMNLP 2023, H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association for Computational Linguistics, Feb. 2023, pp. 9823–9838. doi: 10.18653/v1/2023.findings-emnlp.657.
[7] X. Wang, X. Tang, X. Zhao, J. Wang, and J.-R. Wen, “Rethinking the Evaluation for Conversational Recommendation in the Era of Large Language Models,” in Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association for Computational Linguistics, Feb. 2023, pp. 10052–10065. doi: 10.18653/v1/2023.emnlp-main.621.
[8] T.-J. Chang, L. H.-M. Lin, and R. T.-H. Tsai, “Conversational Product Recommendation using LLM,” in 2024 IEEE 4th International Conference on Electronic Communications, Internet of Things and Big Data (ICEIB), Apr. 2024, pp. 340–343. doi: 10.1109/ICEIB61477.2024.10602608.
[9] H. Zhang et al., “HuatuoGPT, Towards Taming Language Model to Be a Doctor,” in Findings of the Association for Computational Linguistics: EMNLP 2023, H. Bouamor, J. Pino, and K. Bali, Eds., Singapore: Association for Computational Linguistics, Feb. 2023, pp. 10859–10885. doi: 10.18653/v1/2023.findings-emnlp.725.
[10] H. Zhang, X. Wang, Z. Meng, Y. Jia, and D. Xu, “Qibo: A Large Language Model for Traditional Chinese Medicine,” Mar. 24, 2024, arXiv: arXiv:2403.16056. Accessed: Jun. 07, 2024. [Online]. Available: http://arxiv.org/abs/2403.16056
[11] Y. Tan et al., “MedChatZH: A tuning LLM for traditional Chinese medicine consultations,” Computers in Biology and Medicine, vol. 172, p. 108290, Apr. 2024, doi: 10.1016/j.compbiomed.2024.108290.
[12] 蘇志民, “協助醫師問診的系統及方法,” TW201905934A, Feb. 01, 2019 Accessed: Jul. 03, 2024. [Online]. Available: https://patents.google.com/patent/TW201905934A/zh
[13] K. Krishna, S. Khosla, J. Bigham, and Z. C. Lipton, “Generating SOAP Notes from Doctor-Patient Conversations Using Modular Summarization Techniques,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), C. Zong, F. Xia, W. Li, and R. Navigli, Eds., Online: Association for Computational Linguistics, Aug. 2021, pp. 4958–4972. doi: 10.18653/v1/2021.acl-long.384.
[14] A. Asai, S. Min, Z. Zhong, and D. Chen, “Retrieval-based Language Models and Applications,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 6: Tutorial Abstracts), Y.-N. (Vivian) Chen, M. Margot, and S. Reddy, Eds., Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 41–46. doi: 10.18653/v1/2023.acl-tutorials.6.
[15] K. Roy et al., “Using Large Pretrained Language Models for Answering User Queries from Product Specifications,” in Proceedings of the 3rd Workshop on e-Commerce and NLP, S. Malmasi, S. Kallumadi, N. Ueffing, O. Rokhlenko, E. Agichtein, and I. Guy, Eds., Seattle, WA, USA: Association for Computational Linguistics, Jul. 2020, pp. 35–39. doi: 10.18653/v1/2020.ecnlp-1.5.
[16] L. Yang et al., “MixPAVE: Mix-Prompt Tuning for Few-shot Product Attribute Value Extraction,” in Findings of the Association for Computational Linguistics: ACL 2023, A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds., Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 9978–9991. doi: 10.18653/v1/2023.findings-acl.633.
[17] N. Ousidhoum, Z. Yuan, and A. Vlachos, “Varifocal Question Generation for Fact-checking,” in Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, Y. Goldberg, Z. Kozareva, and Y. Zhang, Eds., Abu Dhabi, United Arab Emirates: Association for Computational Linguistics, Feb. 2022, pp. 2532–2544. doi: 10.18653/v1/2022.emnlp-main.163.
[18] A. Rani et al., “FACTIFY-5WQA: 5W Aspect-based Fact Verification through Question Answering,” in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), A. Rogers, J. Boyd-Graber, and N. Okazaki, Eds., Toronto, Canada: Association for Computational Linguistics, Jul. 2023, pp. 10421–10440. doi: 10.18653/v1/2023.acl-long.581.
[19] B. P. Majumder, S. Rao, M. Galley, and J. McAuley, “Ask what’s missing and what’s useful: Improving Clarification Question Generation using Global Knowledge,” in Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, K. Toutanova, A. Rumshisky, L. Zettlemoyer, D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds., Online: Association for Computational Linguistics, Jun. 2021, pp. 4300–4312. doi: 10.18653/v1/2021.naacl-main.340.
[20] Z. Zhang and K. Q. Zhu, “Diverse and Specific Clarification Question Generation with Keywords,” in Proceedings of the Web Conference 2021, Apr. 2021, pp. 3501–3511. doi: 10.1145/3442381.3449876.
[21] Z. Wang, Y. Tu, C. Rosset, N. Craswell, M. Wu, and Q. Ai, “Zero-shot Clarifying Question Generation for Conversational Search,” in Proceedings of the ACM Web Conference 2023, Austin TX USA: ACM, Apr. 2023, pp. 3288–3298. doi: 10.1145/3543507.3583420.
[22] X. Jiang, S. Wang, W. Liu, and Y. Yang, “Prediction of traditional Chinese medicine prescriptions based on multi-label resampling,” Journal of Electronic Business & Digital Economics, vol. 2, no. 2, pp. 213–227, Jan. 2023, doi: 10.1108/JEBDE-04-2023-0009.
[23] W. Xu and Q. Wu, “A Novel TCM Prescription Recommendation Method based on Attention Factorization Machines,” Journal of Computing and Electronic Information Management, vol. 10, pp. 55–61, May 2023, doi: 10.54097/jceim.v10i3.8682.
[24] X. Dong et al., “TCMPR: TCM Prescription recommendation based on subnetwork term mapping and deep learning,” in 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Feb. 2021, pp. 3776–3783. doi: 10.1109/BIBM52615.2021.9669588.
[25] Z. Zhao et al., “PreGenerator: TCM Prescription Recommendation Model Based on Retrieval and Generation Method,” IEEE Access, vol. 11, pp. 103679–103692, 2023, doi: 10.1109/ACCESS.2023.3316219.
[26] J. Qi, X. Wang, and T. Yang, “Traditional Chinese Medicine Prescription Recommendation Model Based on Large Language Models and Graph Neural Networks,” in 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Feb. 2023, pp. 4623–4627. doi: 10.1109/BIBM58861.2023.10385489.
[27] Y. Cui, Z. Yang, and X. Yao, “Efficient and Effective Text Encoding for Chinese LLaMA and Alpaca,” Feb. 22, 2024, arXiv: arXiv:2304.08177. doi: 10.48550/arXiv.2304.08177.
[28] “A dataset for Chinese-English Terminology of Chinese Medicine.” Accessed: Oct. 13, 2024. [Online]. Available: https://www.scidb.cn/en/detail?dataSetId=798559406290632704
[29] Sturgeon D., “醫方集解 - 中國哲學書電子化計劃.” Accessed: Oct. 13, 2024. [Online]. Available: https://ctext.org/wiki.pl?if=gb&res=244407 |