博碩士論文 111522140 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.144.176.149
姓名 陳政瑋(Zheng-Wei Chen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 結合關鍵特徵對齊的無監督細粒度領域適應模型應用於瑕疵圖像分類
(Unsupervised Fine-grained Domain Adaptation Model with Critical Feature Alignment for Defect Classification)
相關論文
★ 坵塊分離、合併檢測系統★ 使用雲林、彰化地區航空影像建立水稻判釋模型之研究
★ 應用分類重建學習偵測航照圖幅中的新穎坵塊★ 使用無紋理之3D CAD工業零件模型結合長度檢測實現細粒度真實工業零件影像分類
★ 在紡織製造中使用多變量迴歸樹以識別具有瑕疵相依性的參數★ AsyncGen: 結合AutoGen與Ray的非同步執行和分散式多代理對話框架
★ 動態與靜態特徵融合應用於跨資料集的深偽偵測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-2-1以後開放)
摘要(中) 在產線製造過程中,瑕疵分類可以有效檢測產品品質且利於人員修復產品,近年來雖然可以透過 AI 輔助瑕疵分類來大幅降低時間及人力成本,但一般分類模型應用於瑕疵分類上準確度往往差強人意,其原因在於瑕疵類別之間十分相似,使其成為了細粒度圖像分類問題,這使得模型需要能更精準地學習到更重要的瑕疵特徵才能避免模型被相似的類別混淆,還有在對新產品進行瑕疵分類時,會因為新、舊產品的背景顏色和亮度不同,而發生了 domain shift 問題,導致模型的效能會大幅下將。
雖然這些問題都有各自解決的方法,但在瑕疵分類中,模型需要能同時改善上述問題,因此我們提出了 Unsupervised Fine Grained Domain Adaptation Model combine with Critical Feature Alignment for Defect Images Classification (UFD),此方法以細粒度圖像分
類模型為架構來強化對相似瑕疵類別之間的辨別力,並生產偽標籤使得模型透過訓練沒有標籤的新產品來增強模型泛化力,再提出了 critical feature alignment (CFA) 的方法來改善 domain shift 的問題,最後透過使用預訓練權重來增加訓練初期偽標籤的正確性使模型能夠順利訓練並縮短訓練時間。
在實驗中,我們使用非公開的面板瑕疵資料來進行實驗,而在真實場景的瑕疵分類實驗中,我們的方法在四個平均指標中都高出其他方法約 20% 至 30%。,這證實了我們的方法可以有效應用於瑕疵分類任務中,以達到降低人力與時間成本的目的。此外,我們還使用了兩個公開的資料集來進行實驗,目的在於證明我們方法能夠改善細粒度圖像分類問題以及 domain shift 問題,而我們的方法在實驗二與最好的方法相差不到 0.3%,實驗三我們的方法比第二好的方法提升約 2%,並且跟其餘的方法相比提升了
10% 以上。
摘要(英) In manufacturing, defect classification plays a crucial role in effectively assessing product quality and facilitating repair by personnel. In recent years, leveraging AI for defect classification has significantly reduced time and labor costs. However, the performance of general classification models in defect classification is unsatisfactory. This is primarily due to the high similarity among defect categories, which introduces challenges related to fine-grained image classification. To address this, models must precisely capture critical defect features to avoid confusion between similar categories. Furthermore, domain shift issues often arise when classifying defects in new products due to differences in background color and brightness between new and old products, leading to a substantial decline in model performance.
Although these challenges have individual solutions, defect classification models must address them simultaneously. To this end, we propose the Unsupervised Fine-Grained Domain Adaptation Model with Critical Feature Alignment for Defect Image Classification (UFD). This method employs a fine-grained image classification architecture to enhance discrimination between similar defect categories. Then, we generate pseudo-labels to enable the model to train on unlabeled new product data, thereby improving generalization. In addition, we propose a Critical Feature Alignment (CFA) method to mitigate domain shift issues. Finally, by using pre-trained weights to increase the accuracy of pseudo-labels in the early stages of training, the model can be trained smoothly, and the training time can be shortened.
In the experiments, we utilized a proprietary panel defect dataset to evaluate our method. In real-world defect classification experiments, our approach outperformed other methods by approximately 20% to 30% across four averaged metrics. This demonstrates that our method can be effectively applied to defect classification tasks, achieving the goal of reducing labor and time costs. Additionally, we conducted experiments on two public datasets to validate the effectiveness of our method in addressing fine-grained image classification problems and domain shift issues. In Experiment 2, our method was within 0.3% of the best-performing approach, while in Experiment 3, our method outperformed the second-best approach by approximately 2% and achieved an improvement of over 10% compared to other methods.
關鍵字(中) ★ 瑕疵分類
★ 無監督式領域自適應
★ 細粒度圖像分類
關鍵字(英) ★ defect classification
★ unsupervised domain adaptation
★ fine-grained visual classification
論文目次 目錄
頁次
摘要 i
Abstract ii
誌謝
Acknowledgements iv
目錄 v
圖目錄 vii
表目錄 viii
一、 緒論 1
二、 Related work 4
2.1 Fine-Grained Visual Classification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Unsupervised Domain Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
三、 方法 7
3.1 資料集參數定義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 HERBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.1 FPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2.2 Background Suppression Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Pseudo Label Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4 Critical Feature Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.5 Pretrained-weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
四、 實驗 18
4.1 資料集介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 A19 及 B19 面板瑕疵資料集. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 ImageCLEF-DA Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1.3 Bird31 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 參數設置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.3 實驗結果 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 評估指標 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.1 Classification Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4.2 實驗一: 面板瑕疵非公開資料集圖像分類. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.4.3 實驗二: ImageCLEF-DA 公開資料集非細粒度圖像分類 . . . . . . . . . . . . . . 24
4.4.4 實驗三: Bird31 公開資料集細粒度圖像分類 . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 實驗分析 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
五、 總結 31
參考文獻 33
參考文獻 [1] X.-S. Wei, Y.-Z. Song, O. Mac Aodha, et al., “Fine-grained image analysis with deep learning: A survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 12, pp. 8927–8948, 2021.
[2] Y. Zhang, “A survey of unsupervised domain adaptation for visual recognition,” arXiv preprint arXiv:2112.06745, 2021.
[3] P.-Y. Chou, Y.-Y. Kao, and C.-H. Lin, “Fine-grained visual classification with high-temperature refinement and background suppression,” arXiv preprint arXiv:2303.06442, 2023.
[4] J. Liang, D. Hu, and J. Feng, “Domain adaptation with auxiliary target domain-oriented classifier,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 632–16 642.
[5] J. Rajasegaran, S. Khan, M. Hayat, F. S. Khan, and M. Shah, “Self-supervised knowledge distillation for few-shot learning,” arXiv preprint arXiv:2006.09785, 2020.
[6] M. Long, H. Zhu, J. Wang, and M. I. Jordan, “Deep transfer learning with joint adaptation networks,” in International Conference on Machine Learning, PMLR, 2017, pp. 2208–2217.
[7] S. Wang, X. Chen, Y. Wang, M. Long, and J. Wang, “Progressive adversarial networks for finegrained domain adaptation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp. 9213–9222.
[8] T.-Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid networks for object detection,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 2117–2125.
[9] A. Dosovitskiy, “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.
[10] A. Gretton, K. Borgwardt, M. Rasch, B. Scholkopf, and A. Smola, “A kernel method for the twosample-problem,” Advances in Neural Information Processing Systems, vol. 19, 2006.
[11] S. Kullback and R. A. Leibler, “On information and sufficiency,” The Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.
[12] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,” in International Conference on Machine Learning, PMLR, 2017, pp. 214–223.
[13] L. Chen, H. Chen, Z. Wei, et al., “Reusing the task-specific classifier as a discriminator: Discriminator-free adversarial domain adaptation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 7181–7190.
[14] Y. Jin, X. Wang, M. Long, and J. Wang, “Minimum class confusion for versatile domain adaptation,” in European Conference on Computer Vision, Glasgow, UK, Springer, 2020, pp. 464–480.
[15] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand, “Domain-adversarial neural networks,” arXiv preprint arXiv:1412.4446, 2014.
[16] M. Long, Z. Cao, J. Wang, and M. I. Jordan, “Conditional adversarial domain adaptation,” Advances in Neural Information Processing Systems, vol. 31, 2018.
[17] K. Sohn, D. Berthelot, N. Carlini, et al., “Fixmatch: Simplifying semi-supervised learning with consistency and confidence,” Advances in Neural Information Processing Systems, vol. 33, pp. 596–608, 2020.
[18] J. Zhu, H. Bai, and L. Wang, “Patch-mix transformer for unsupervised domain adaptation: A game perspective,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 3561–3571.
[19] W. Zhou and Z. Zhou, “Unsupervised domain adaption harnessing vision-language pre-training,” IEEE Transactions on Circuits and Systems for Video Technology, 2024.
[20] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.,” Journal of Machine Learning Research, vol. 9, no. 11, 2008.
指導教授 林家瑜(Jia-Yu Lin) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明