參考文獻 |
1. Insights into Cyber threat Intelligence: https://www.techtarget.com/whatis/definition/threat-intelligence-cyber-threat-intelligence
2. D. Biancho, “The Pyramid of Pain,” http://detect-respond.blogspot.com/2013/03/the-pyramid-of-pain.html, 2014.
3. X. Liao, K. Yuan, X. Wang, Z. Li, L. Xing, and R. Beyah, “Acing the ioc game: Toward automatic discovery and analysis of open-source cyber threat intelligence,” vol. 24-28-October-2016. Association for Computing Machinery, 10 2016, pp. 755–766.
4. M. T. Alam, D. Bhusal, Y. Park, and N. Rastogi, “Cyner: A python library for cybersecurity named entity recognition,” 4 2022. [Online]. Available: http://arxiv.org/abs/2204.05754
5. G. Husari, E. Al-Shaer, M. Ahmed, B. Chu, and X. Niu, “Ttpdrill: Automatic and accurate extraction of threat actions from unstructured text of cti sources,” vol. Part F132521. Association for Computing Machinery, 12 2017, pp. 103–115.
6. V. Legoy, M. Caselli, C. Seifert, and A. Peter, “Automated retrieval of att&ck tactics and techniques for cyber threat reports,” 4 2020. [Online]. Available: http://arxiv.org/abs/2004.14322
7. MITRE Engenuity, “Threat Report ATT&CK Mapping (TRAM).” [Online]. Available: https://mitre-engenuity.org/blog/2021/09/30/ threat-report-attck-mapper-tram/
8. Microsoft, “MitreMap - Inferring MITRE Technique from Threat Intel Data .” [Online]. Available: https://github.com/Azure/Azure-Sentinel-Notebooks/tree/ master/mitremap-notebook
9. MITRE ATT&CK Framework - https://attack.mitre.org/
10. G. Husari, X. Niu, B. Chu and E. Al-Shaer, "Using Entropy and Mutual Information to Extract Threat Actions from Cyber Threat Intelligence," 2018 IEEE International Conference on Intelligence and Security Informatics (ISI), Miami, FL, USA, 2018, pp. 1-6, doi: 10.1109/ISI.2018.8587343.
11. Legoy, V., Caselli, M., Seifert, C., Peter, A.: Automated retrieval of att&ck tactics and techniques for cyber threat reports. arXiv preprint arXiv:2004.14322 (2020)
12. Zhu, Z., Dumitras, T.: ChainSmith: Automatically learning the semantics of malicious campaigns by mining threat intelligence reports. In: IEEE European Symposium on Security and Privacy (2018)
13. Zhang, S., Chen, P., Bai, G., Wang, S., Zhang, M., Li, S. and Zhao, C., 2022. An Automatic Assessment Method of Cyber Threat Intelligence Combined with ATT&CK Matrix. Wireless Communications and Mobile Computing, 2022.
14. Li, Z., Zeng, J., Chen, Y. and Liang, Z., 2022, September. AttacKG: Constructing technique knowledge graph from cyber threat intelligence reports. In Computer Security–ESORICS 2022: 27th European Symposium on Research in Computer Security, Copenhagen, Denmark, September 26–30, 2022, Proceedings, Part I (pp. 589-609). Cham: Springer International Publishing.
15. Satvat, K., Gjomemo, R. and Venkatakrishnan, V.N., 2021, September. Extractor: Extracting attack behavior from threat reports. In 2021 IEEE European Symposium on Security and Privacy (EuroS&P) (pp. 598-615). IEEE.
16. Alam, M.T., Bhusal, D., Park, Y. and Rastogi, N., 2022. Looking Beyond IoCs: Automatically Extracting Attack Patterns from External CTI. arXiv preprint arXiv:2211.01753.
17. Kaiser, F.K., Dardik, U., Elitzur, A., Zilberman, P., Daniel, N., Wiens, M., Schultmann, F., Elovici, Y. and Puzis, R., 2023. Attack Hypotheses Generation Based on Threat Intelligence Knowledge Graph. IEEE Transactions on Dependable and Secure Computing.
18. Gao, P., Liu, X., Choi, E., Ma, S., Yang, X., Ji, Z., Zhang, Z. and Song, D., 2022. ThreatKG: A Threat Knowledge Graph for Automated Open-Source Cyber Threat Intelligence Gathering and Management. arXiv preprint arXiv:2212.10388.
19. Ren, Y., Xiao, Y., Zhou, Y., Zhang, Z. and Tian, Z., 2022. CSKG4APT: A Cybersecurity Knowledge Graph for Advanced Persistent Threat Organization Attribution. IEEE Transactions on Knowledge and Data Engineering.
20. Nadeem, A., Verwer, S., Moskal, S. and Yang, S.J., 2021. Alert-driven attack graph generation using s-pdfa. IEEE Transactions on Dependable and Secure Computing, 19(2), pp.731-746.
21. Li, T., Jiang, Y., Lin, C., Obaidat, M.S., Shen, Y. and Ma, J., 2022. Deepag: Attack graph construction and threats prediction with bi-directional deep learning. IEEE Transactions on Dependable and Secure Computing, 20(1), pp.740-757.
22. Haddad, Ashraf, Najwa Aaraj, Preslav Nakov, and Septimiu Fabian Mare. "Automated Mapping of CVE Vulnerability Records to MITRE CWE Weaknesses." arXiv preprint arXiv:2304.11130 (2023).
23. Aghaei, E., 2022. Automated Classification and Mitigation of Cybersecurity Vulnerabilities (Doctoral dissertation, The University of North Carolina at Charlotte).
24. Aghaei, E., Shadid, W. and Al-Shaer, E., 2020. Threatzoom: CVE2CWE using hierarchical neural network. arXiv preprint arXiv:2009.11501.
25. Ampel, B., Samtani, S., Ullman, S. and Chen, H., 2021. Linking Common Vulnerabilities and Exposures to the MITRE ATT&CK Framework: A Self-Distillation Approach. arXiv preprint arXiv:2108.01696.
26. Kanakogi, Kenta, Hironori Washizaki, Yoshiaki Fukazawa, Shinpei Ogata, Takao Okubo, Takehisa Kato, Hideyuki Kanuka, Atsuo Hazeyama, and Nobukazu Yoshioka. 2022. "Comparative Evaluation of NLP-Based Approaches for Linking CAPEC Attack Patterns from CVE Vulnerability Information" Applied Sciences 12, no. 7: 3400. https://doi.org/10.3390/app12073400
27. Constantin Adam, Muhammed Fatih Bulut, Daby Sow, Steven Ocepek, ChrisBedell, and Lilian Ngweta. 2022. Attack Techniques and Threat Identification for Vulnerabilities. In Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA.
28. Common Attack Pattern Enumeration and Classification, https://capec.mitre.org/index.html
29. Common Weakness Enumeration, https://cwe.mitre.org/
30. Z. Li, J. Zeng, Y. Chen, and Z. Liang, “AttacKG: Constructing technique knowledge graph from cyber threat intelligence reports,” European Symposium on Research in Computer Security (pp. 589-609). Cham: Springer International Publishing, 2022.
31. Kiavash Satvat, Rigel Gjomemo, and V. N. Venkatakrishnan. 2021. Extractor: Extracting attack behavior from threat reports. In IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, 598–615.
32. Rahman, M.R., Wroblewski, B., Matthews, Q., Morgan, B., Menzies, T. and Williams, L., 2024. Mining Temporal Attack Patterns from Cyberthreat Intelligence Reports. arXiv preprint arXiv:2401.01883.
33. Y. Ren, Y. Xiao, Y. Zhou, Z. Zhang, and Z. Tian, “CSKG4APT: A cybersecurity knowledge graph for advanced persistent threat organization attribution,” IEEE Transactions on Knowledge and Data Engineering, 2022.
34. Data Source- MITRE ATT&CK, https://attack.mitre.org/datasources/
35. NVD CWE-CVE mappings: https://www.kaggle.com/datasets/krooz0/cve-and-cwe-mapping-dataset?resource=download
36. Threat Informed Defense mappings: https://github.com/center-for-threat-informed-defense/attack_to_cve
37. Hu Xu, Bing Liu, Lei Shu, and Philip S Yu. Bert post-training for review reading comprehension and aspect-based sentiment analysis. arXiv preprint arXiv:1904.02232, 2019.
38. Bhavika Bhutani, Neha Rastogi, Priyanshu Sehgal, and Archana Purwar. Fake news detection using sentiment analysis. In 2019 twelfth international conference on contemporary computing (IC3), pages 1–5. IEEE, 2019.
39. Ming Ding, Chang Zhou, Hongxia Yang, and Jie Tang. Cogltx: Applying bert to long texts. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems, volume 33, pages 12792–12804. Curran Associates, Inc., 2020.
40. Jinghui Lu, Maeve Henchion, Ivan Bacher, and Brian Mac Namee. A sentence-level hierarchical bert model for document classification with limited labelled data. In International Conference on Discovery Science, pages 231–241. Springer, 2021.
41. CyberMonitor. Apt & cybercriminals campaign collection, 2022
42. NVD CWE Slice: https://nvd.nist.gov/vuln/categories
43. MITRE Engenuity,” Attack Flow”.[online] Available: https://mitre-engenuity.org/cybersecurity/center-for-threat-informed-defense/our-work/attack-flow/
44. MITRE Engenuity, “Top ATT&CK Techniques”.[online] Available: https://top-attack-techniques.mitre-engenuity.org/methodology
45. “Indicators of Compromise”. [online] Available: https://mschalocy.medium.com/indicators-of-compromise-b6173ea9ebab
46. S. N. G. Gourisetti, M. Mylrea, and H. Patangia, “Cybersecurity vulnerability mitigation framework through empirical paradigm: Enhanced prioritized gap analysis,” Future Generation Computer Systems, vol. 105, pp. 410–431, 4 2020.
47. N. Al-Safwani, Y. Fazea, and H. Ibrahim, “Iscp: In-depth model for selecting critical security controls,” Computers and Security, vol. 77, pp. 565–577, 8 2018.
48. E. Hadar, D. Kravchenko, and A. Basovskiy, “Cyber digital twin simulator for automatic gathering and prioritization of security controls’ requirements,” vol. 2020-August. IEEE Computer Society, 8 2020, pp. 250–259.
49. T. Llanso, “Ciam: A data-driven approach for selecting and prioritizing security ’ controls,” 2012, pp. 91–98.
50. R. Kwon, T. Ashley, J. Castleberry, P. McKenzie, and S. N. G. Gourisetti, “Cyber threat dictionary using mitre attck matrix and nist cybersecurity framework mapping.” Institute of Electrical and Electronics Engineers Inc., 10 2020, pp. 106–112
51. A. Winters, “Automated control prioritization based on generating sector-based threat profiles”, 2023. (Master′s thesis, University of Twente).
52. IOC Extraction Tool . “CYOBSTRACT” [online] Available: https://github.com/cmu-sei/cyobstract
53. J. Pustejovsky, J. M. Castano, R. Ingria, R. Sauri, R. J. Gaizauskas, A. Setzer, G. Katz, and D. R. Radev, “Timeml: Robust specification of event and temporal expressions in text.” New directions in question answering, vol. 3, pp. 28–34, 2003.
54. R. Kerkdijk, S. Tesink, F. Fransen, and F. Falconieri, “Evidence-Based Prioritization of Cybersecurity Threats”, 2021.
55. Real Intrusions by real Attackers, https://thedfirreport.com/
56. SecureBERT: https://github.com/ehsanaghaei/SecureBERT
57. J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields: Probabilistic models for segmenting and labeling sequence data”, In Icml (Vol. 1, No. 2, p. 3), 2001.
58. J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
59. J. Ramos, “Using tf-idf to determine word relevance in document queries”, Proceedings of the first instructional conference on machine learning , Vol. 242, No. 1, pp. 29-48, 2003.
60. L. Ma and Y. Zhang, “Using Word2Vec to process big text data”, IEEE International Conference on Big Data (Big Data), pp. 2895-2897, 2015.
61. I. Beltagy, K. Lo, and A. Cohan, “SciBERT: A pretrained language model for scientific text”, 2019. arXiv preprint arXiv:1903.10676.
62. Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy, "Hierarchical attention networks for document classification”, Proceedings of the 2016 conference of the North American chapter of the association for computational linguistics: human language technologies, pages 1480–1489, 2016.
63. Y. T. Huang et al., "MITREtrieval: Retrieving MITRE Techniques From Unstructured Threat Reports by Fusion of Deep Learning and Ontology," in IEEE Transactions on Network and Service Management, 2024, doi: 10.1109/TNSM.2024.3401200.
64. Tesla cloud systems exploited by hackers to mine cryptocurrency, https://www.zdnet.com/article/tesla-systems-used-by-hackers-to-mine-cryptocurrency/ |