參考文獻 |
[1] R. Jayasekera, “Prediction of company failure: Past, present and promising directions for the future,” Int. Rev. Financ. Anal., vol. 55, pp. 196–208, 2018, doi: 10.1016/j.irfa.2017.08.009.
[2] J. Sun and H. Li, “Financial distress prediction using support vector machines: Ensemble vs. individual,” Appl. Soft Comput., vol. 12, no. 8, pp. 2254–2265, 2012, doi: 10.1016/j.asoc.2012.03.028.
[3] D. V. Dinh, R. J. Powell, and D. H. Vo, “Forecasting corporate financial distress in the Southeast Asian countries: A market-based approach,” J. Asian Econ., vol. 74, p. 101293, 2021, doi: 10.1016/j.asieco.2021.101293.
[4] J. Sun, H. Li, Q. H. Huang, and K. Y. He, “Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches,” Knowledge-Based Syst., vol. 57, pp. 41–56, 2014, doi: 10.1016/j.knosys.2013.12.006.
[5] N. Munoz-Izquierdo, E. K. Laitinen, M. del M. Camacho-Minano, and D. Pascual-Ezama, “Does audit report information improve financial distress prediction over Altman’s traditional Z-Score model?,” J. Int. Financ. Manag. Account., vol. 31, no. 1, pp. 65–97, 2020, doi: 10.1111/jifm.12110.
[6] Z. Li, J. Crook, G. Andreeva, and Y. Tang, “Predicting the risk of financial distress using corporate governance measures,” Pacific Basin Financ. J., vol. 68, no. February 2020, p. 101334, 2021, doi: 10.1016/j.pacfin.2020.101334.
[7] J. M. Gonzalez-Martin, A. J. Sanchez-Medina, and J. B. Alonso, “Optimization of the prediction of financial problems in Spanish private health companies using genetic algorithms,” Gac. Sanit., vol. 33, no. 5, pp. 462–467, 2019, doi: 10.1016/j.gaceta.2018.01.001.
[8] S. Do?an, D. Kocak, and M. Atan, “Financial distress prediction using support vector machines and logistic regression,” in Contribution to Economics, M. K. Terzio?lu, Ed., Springer, 2022, pp. 429–452. doi: 10.1007/978-3-030-85254-2_26.
[9] Y. P. Huang and M. F. Yen, “A new perspective of performance comparison among machine learning algorithms for financial distress prediction,” Appl. Soft Comput. J., vol. 83, p. 105663, 2019, doi: 10.1016/j.asoc.2019.105663.
[10] E. I. Altman, “Financial ratios, discriminant analysis and the prediction of corporate bankruptcy,” J. Finance, vol. 23, no. 4, pp. 589–609, 1968, doi: 10.2307/2978933.
[11] F. Barboza, H. Kimura, and E. Altman, “Machine learning models and bankruptcy prediction,” Expert Syst. Appl., vol. 83, pp. 405–417, 2017, doi: 10.1016/j.eswa.2017.04.006.
[12] S. Ashraf, E. G. S. Felix, and Z. Serrasqueiro, “Do traditional financial distress prediction models predict the early warning signs of financial distress?,” J. Risk Financ. Manag., vol. 12, no. 2, p. 55, 2019, doi: 10.3390/jrfm12020055.
[13] W. Qiu, S. Rudkin, and P. D?otko, “Refining understanding of corporate failure through a topological data analysis mapping of Altman’s Z-score model,” Expert Syst. Appl., vol. 156, p. 113475, 2020, doi: 10.1016/j.eswa.2020.113475.
[14] C. Larson, R. Sloan, and J. Z. Giedt, “Defining, measuring and modeling accruals: A guide for researchers,” Rev. Account. Stud., vol. 23, pp. 827–871, 2018, doi: 10.1007/s11142-018-9457-z.
[15] G. Wang, G. Chen, and Y. Chu, “A new random subspace method incorporating sentiment and textual information for financial distress prediction,” Electron. Commer. Res. Appl., vol. 29, pp. 30–49, 2018, doi: 10.1016/j.elerap.2018.03.004.
[16] S. Zeng, Y. Li, W. Yang, and Y. Li, “A financial distress prediction model based on sparse algorithm and support vector machine,” Math. Probl. Eng., vol. 2020, 2020, doi: 10.1155/2020/5625271.
[17] C.-C. Lu, A. Rahmi, Y. Liu, and D. Liang, “Feature discovery for improved financial distress prediction: Exploring the role of firm information categories,” 2024.
[18] D. Liang, C.-F. Tsai, H.-Y. Lu, and L.-S. Chang, “Combining corporate governance indicators with stacking ensemble for financial distress prediction,” J. Bus. Res., vol. 120, pp. 137–146, 2020, doi: 10.1016/j.jbusres.2020.07.052.
[19] A. Rahmi, C. Lu, D. Liang, and A. N. Fadilah, “Splitting long-term and short-term financial ratios for improved financial distress prediction: Evidence from Taiwanese public companies,” J. Forecast., no. April, pp. 1–18, 2022, doi: 10.1002/for.3143.
[20] X. Du, W. Li, S. Ruan, and L. Li, “CUS-heterogeneous ensemble-based financial distress prediction for imbalanced dataset with ensemble feature selection,” Appl. Soft Comput. J., vol. 97, 2020, doi: 10.1016/j.asoc.2020.106758.
[21] M. F. H. Komar, D. Liang, and A. Rahmi, “Financial distress prediction based on Altman ratio and Beneish M-score using stacking ensemble learning,” National Central University, Universitas Gadjah Mada, 2022.
[22] G. Wang, J. Ma, G. Chen, and Y. Yang, “Financial distress prediction: Regularized sparse-based Random Subspace with ER aggregation rule incorporating textual disclosures,” Appl. Soft Comput., vol. 90, p. 106152, 2020, doi: 10.1016/j.asoc.2020.106152.
[23] Y. Zou, C. Gao, and H. Gao, “Business failure prediction based on a cost-sensitive extreme gradient boosting machine,” IEEE Access, vol. 10, pp. 42623–42639, 2022, doi: 10.1109/ACCESS.2022.3168857.
[24] A. Tron, M. Dallocchio, S. Ferri, and F. Colantoni, “Corporate governance and financial distress: lessons learned from an unconventional approach,” J. Manag. Gov., vol. 27, pp. 425–456, 2023, doi: 10.1007/s10997-022-09643-8.
[25] J. Liu, C. Li, P. Ouyang, J. Liu, and C. Wu, “Interpreting the prediction results of the tree-based gradient boosting models for financial distress prediction with an explainable machine learning approach,” J. Forecast., vol. 42, pp. 1112–1137, 2023, doi: 10.1002/for.2931.
[26] C. Kelly and K. Okada, “Variable interaction measures with random forest classifiers,” in 2012 9th IEEE International Symposium on Biomedical Imaging, Barcelona, 2012, pp. 154–157. doi: 10.1109/ISBI.2012.6235507.
[27] D. Dhaliwal, K. R. Subramanyam, and R. Trezevant, “Is Comprehensive Income Superior to Net Income as a Measure of Firm Performance?,” J. Account. Econ., vol. 26, pp. 43–67, 1999, doi: 10.1016/S0165-4101(98)00033-0.
[28] J. Barton, T. B. Hansen, and G. Pownall, “Which Performance Measures Do Investors Around the World Value the Most-and Why?,” Account. Rev., vol. 85, no. 3, pp. 753–789, 2010, doi: 10.2308/accr.2010.85.3.753.
[29] P. Pronobis and H. Zulch, “The predictive power of comprehensive income and its individual components under IFRS,” Probl. Perspect. Manag., vol. 9, no. 4, pp. 72–88, 2011, doi: 10.2139/ssrn.1576384.
[30] E. J. Allen, C. R. Larson, and R. G. Sloan, “Accrual reversals, earnings and stock returns,” J. Account. Econ., vol. 56, no. 1, pp. 113–129, 2013, doi: 10.1016/j.jacceco.2013.05.002.
[31] R. Ball, J. Gerakos, J. T. Linnainmaa, and V. Nikolaev, “Earnings, retained earnings, and book-to-market in the cross section of expected returns,” J. financ. econ., vol. 135, no. 1, pp. 231–254, 2020, doi: 10.1016/j.jfineco.2019.05.013.
[32] S. Tian and Y. Yu, “Financial ratios and bankruptcy predictions: An international evidence,” Int. Rev. Econ. Financ., vol. 51, pp. 510–526, 2017, doi: 10.1016/j.iref.2017.07.025.
[33] Y. Jiang and S. Jones, “Corporate distress prediction in China: a machine learning approach,” Account. Financ., vol. 58, no. 4, pp. 1063–1109, 2018, doi: 10.1111/acfi.12432.
[34] A. Gepp and K. Kumar, “Business failure prediction using statistical techniques: A review,” in Some Recent Developments in Statistical Theory and Applications, K. Kumar and A. Chaturvedi, Eds., Boca Raton, Florida: Brown Walker Press, 2012, pp. 1–25.
[35] D. Wolpert, “Stacked generalization (Stacking),” Neural Networks, vol. 5, pp. 241–259, 1992.
[36] D. Liang, C. F. Tsai, A. J. Dai, and W. Eberle, “A novel classifier ensemble approach for financial distress prediction,” Knowl. Inf. Syst., vol. 54, no. 437–462, pp. 1–26, 2018, doi: 10.1007/s10115-017-1061-1.
[37] J. Sun and H. Li, “Financial distress prediction based on serial combination of multiple classifiers,” Expert Syst. Appl., vol. 36, no. 4, pp. 8659–8666, 2009, doi: 10.1016/j.eswa.2008.10.002.
[38] A. M. Abdullah, “Comparing the reliability of accounting-based and market-based prediction models,” Asian J. Account. Gov., vol. 7, no. March, pp. 41–55, 2016, doi: 10.17576/ajag-2016-07-04.
[39] M. D. Beneish, “The Detection of Earnings Manipulation,” Financ. Anal. J., vol. 55, no. 5, pp. 24–36, 1999, doi: 10.2469/faj.v55.n5.2296.
[40] M. D. Beneish, C. M. C. C. Lee, D. C. Nicholas, and D. C. Nichols, “Earnings manipulation and expected returns,” Financ. Anal. J., vol. 69, no. 2, pp. 57–82, 2013, doi: 10.2469/faj.v69.n2.1.
[41] I. Pustylnick, “Combined Algorithm for Detection of Manipulation in Financial Statements,” SSRN Electron. J., 2011, doi: 10.2139/ssrn.1422693.
[42] M. Warshavsky, “Analyzing Earnings Quality as a Financial Forensic Tool,” Financ. Valuat. Litig. Expert J., no. 39, pp. 16–20, 2012.
[43] J. MacCarthy, “Using Beneish M-Score and Altman Z-Score models to detect financial fraud and company failure,” Int. J. Financ. Account., vol. 6, no. 6, pp. 159–166, 2017, doi: 10.5937/tekstind2104020k.
[44] F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” J. Polit. Econ., vol. 81, no. 3, pp. 637–654, 1973.
[45] R. C. Merton, “On the Pricing of Corporate Debt?: The Risk Structure of Interest Rates,” J. Finance, vol. 29, no. 2, pp. 449–470, 1974.
[46] S. T. Bharath and T. Shumway, “Forecasting default with the Merton distance to default model,” Rev. Financ. Stud., vol. 21, no. 3, pp. 1339–1369, 2008, doi: 10.1093/rfs/hhn044.
[47] J. Anderson, Y. Cao, E. J. Riedl, and S. X. Song, “Other comprehensive income, its components, and analysts’ forecasts,” Rev. Account. Stud., 2022, doi: 10.1007/s11142-021-09656-y.
[48] R. Boulland, G. J. Lobo, and L. Paugam, “Do Investors Pay Sufficient Attention to Banks’ Unrealized Gains and Losses on Available-for-sale Securities?,” Eur. Account. Rev., vol. 28, no. 5, pp. 819–848, 2019, doi: 10.1080/09638180.2018.1562950.
[49] B. Bratten, M. Causholli, and U. Khan, “Usefulness of fair values for predicting banks’ future earnings: evidence from other comprehensive income and its components,” Rev. Account. Stud., vol. 21, no. 1, pp. 280–315, 2016, doi: 10.1007/s11142-015-9346-7.
[50] J. Lee, S. J. Lee, S. Choi, and S. Kim, “The usefulness of other comprehensive income for predicting future earnings,” J. Asian Financ. Econ. Bus., vol. 7, no. 5, pp. 31–40, 2020, doi: 10.13106/JAFEB.2020.VOL7.NO5.031.
[51] P. Du Jardin, D. Veganzones, and E. Severin, “Forecasting corporate bankruptcy using accrual-based models,” Comput. Econ., vol. 54, pp. 7–43, 2019, doi: 10.1007/s10614-017-9681-9.
[52] M. Gu, “Distress Risk, Investor Sophistication, and Accrual Anomaly,” J. Accounting, Audit. Financ., vol. 35, no. 1, pp. 79–105, 2020, doi: 10.1177/0148558X17696762.
[53] Y. Li, X. Li, E. Xiang, and H. Geri Djajadikerta, “Financial distress, internal control, and earnings management: Evidence from China,” J. Contemp. Account. Econ., vol. 16, no. 3, p. 100210, 2020, doi: 10.1016/j.jcae.2020.100210.
[54] M. Malau and E. Murwaningsari, “The effect of market pricing accrual, foreign ownership, financial distress, and leverage on the integrity of financial statements,” Econ. Ann., vol. 63, no. 217, pp. 129–139, 2018, doi: 10.2298/EKA1817129M.
[55] N. T. M. Nguyen, A. Iqbal, and R. K. Shiwakoti, “The context of earnings management and its ability to predict future stock returns,” Rev. Quant. Financ. Account., vol. 59, no. 1, pp. 123–169, 2022, doi: 10.1007/s11156-022-01041-3.
[56] P. Simlai, “Accrual mispricing, value-at-risk, and expected stock returns,” Rev. Quant. Financ. Account., vol. 57, no. 4, pp. 1487–1517, 2021, doi: 10.1007/s11156-021-00985-2.
[57] A. Kamaluddin, N. Ishak, and N. F. Mohammed, “Financial distress prediction through cash flow ratios analysis,” Int. J. Financ. Res., vol. 10, no. 3, pp. 63–76, 2019, doi: 10.5430/ijfr.v10n3p63.
[58] J. Almamy, J. Aston, and L. N. Ngwa, “An evaluation of Altman’s Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK,” J. Corp. Financ., vol. 36, pp. 278–285, 2016, doi: 10.1016/j.jcorpfin.2015.12.009.
[59] J. Horak, J. Vrbka, and P. Suler, “Support vector machine methods and artificial neural networks used for the development of bankruptcy prediction models and their comparison,” J. Risk Financ. Manag., vol. 13, no. 3, p. 60, 2020, doi: 10.3390/jrfm13030060.
[60] D. Neagu, G. Guo, and S. Wang, “An effective combination based on class-wise expertise of diverse classifiers for predictive toxicology data mining,” in International Conference on Advanced Data Mining and Applications, 2006, pp. 165–172. doi: 10.1007/11811305_18.
[61] S. Lahmiri, A. Giakoumelou, and S. Bekiros, “An adaptive sequential-filtering learning system for credit risk modeling,” Soft Comput., vol. 25, no. 13, pp. 8817–8824, 2021, doi: 10.1007/s00500-021-05833-y.
[62] C. F. Tsai and Y. T. Sung, “Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches,” Knowledge-Based Syst., vol. 203, p. 106097, 2020, doi: 10.1016/j.knosys.2020.106097.
[63] K. Tanaka, T. Kinkyo, and S. Hamori, “Random forests-based early warning system for bank failures,” Econ. Lett., vol. 148, pp. 118–121, 2016, doi: 10.1016/j.econlet.2016.09.024.
[64] J. Li, J. D. Malley, A. S. Andrew, M. R. Karagas, and J. H. Moore, “Detecting Gene-Gene Interactions Using a Permutation-based Random Forest Method,” BioData Min., vol. 9, no. 14, pp. 1–17, 2016, doi: 10.1186/s13040-016-0093-5.
[65] W. Liu, H. Fan, M. Xia, and C. Pang, “Predicting and interpreting financial distress using a weighted boosted tree-based tree,” Eng. Appl. Artif. Intell., vol. 116, p. 105466, 2022, doi: https://doi.org/10.1016/j.engappai.2022.105466.
[66] D. Veganzones and E. Severin, “An investigation of bankruptcy prediction in imbalanced datasets,” Decis. Support Syst., vol. 112, pp. 111–124, 2018, doi: 10.1016/j.dss.2018.06.011.
[67] E. Goh, S. M. Roni, and D. Bannigidadmath, “Thomas Cook(ed): using Altman’s z-score analysis to examine predictors of financial bankruptcy in tourism and hospitality businesses,” Asia Pacific J. Mark. Logist., vol. 34, no. 3, pp. 475–487, 2022, doi: 10.1108/APJML-02-2021-0126.
[68] A. Rahmi, C. Lu, D. Liang, and A. N. Fadilah, “Splitting long-term and short-term financial ratios for improved financial distress prediction?: Evidence from Taiwanese public companies,” J. Forecast., no. April, pp. 1–18, 2024, doi: 10.1002/for.3143.
[69] F. Antunes, B. Ribeiro, and F. Pereira, “Probabilistic Modeling and Visualization for Bankruptcy Prediction,” Appl. Soft Comput., vol. 60, pp. 831–843, 2017, doi: 10.1016/j.asoc.2017.06.043.
[70] U. Farooq and M. A. J. Qamar, “Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria,” J. Forecast., vol. 38, no. 7, pp. 632–648, 2019, doi: 10.1002/for.2588.
[71] E. J. Boritz and D. B. Kennedy, “Effectiveness of Neural Network Types for Prediction of Business Failure,” Expert Syst. Appl., vol. 9, no. 4, pp. 503–512, 1995, doi: 10.1016/0957-4174(95)00020-8.
[72] J. Dem?ar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.
[73] C. H. Mu, J. Xie, Y. Liu, F. Chen, Y. Liu, and L. C. Jiao, “Memetic Algorithm with Simulated Annealing Strategy and Tightness Greedy Optimization for Community Detection in Networks,” Appl. Soft Comput., vol. 34, pp. 485–501, 2015, doi: 10.1016/j.asoc.2015.05.034.
[74] S. Choi and P. R. Messinger, “The Role of Fairness in Competitive Supply Chain Relationships: An Experimental Study,” Eur. J. Oper. Res., vol. 251, pp. 798–813, 2016, doi: 10.1016/j.ejor.2015.12.001.
[75] C.-H. Chou, S.-C. Hsieh, and C.-J. Qiu, “Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction,” Appl. Soft Comput., vol. 56, pp. 298–316, 2017, doi: 10.1016/j.asoc.2017.03.014.
[76] Y.-C. Ko, H. Fujita, and T. Li, “An evidential analysis of Altman Z-score for financial predictions: Case study on solar energy companies,” Appl. Soft Comput., vol. 52, pp. 748–759, 2017, doi: 10.1016/j.asoc.2016.09.050.
[77] A. Rahmi, H. Y. Lu, D. Liang, D. Novitasari, and C. F. Tsai, “Role of comprehensive income in predicting bankruptcy,” Comput. Econ., vol. 62, pp. 689–720, 2023, doi: 10.1007/s10614-022-10328-5. |