博碩士論文 106582610 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.21.163.198
姓名 米右法(Asyrofa Rahmi)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 財務困境預測:綜合收入區分、比率拆分、增強模型結構與可解釋性
(Financial Distress Prediction: Comprehensive Income Discrimination, Ratio Splitting, and Enhanced Model Structures with Interpretability)
相關論文
★ 基於最大期望算法之分析陶瓷基板機器暗裂破片率★ 基於時間序列預測的機器良率預測
★ 基於OpenPose特徵的行人分心偵測★ 建構深度學習CNN模型以正確分類傳統AOI模型之偵測結果
★ 一種結合循序向後選擇法與回歸樹分析的瑕疵肇因關鍵因子擷取方法與系統-以紡織製程為例★ 融合生成對抗網路及領域知識的分層式影像擴增
★ 針織布異常偵測方法研究★ 基於工廠生產資料的異常機器維修預測
★ 萃取駕駛人在不同環境之駕駛行為方法★ 基於刮痕瑕疵資料擴增的分割拼接影像生成
★ 應用卷積神經網路於航攝影像做基於坵塊的水稻判釋之研究★ 採迴歸樹進行規則探勘以有效同時降低多種紡織瑕疵
★ 應用增量式學習於多種農作物判釋之研究★ 應用自動化測試於異質環境機器學習管道之 MLOps 系統
★ 農業影像二元分類:坵塊分離的檢測★ 應用遷移學習於胚布瑕疵檢測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-31以後開放)
摘要(中) 本研究探討各種財務特徵對破產和財務困境的預測能力、一種新型財務困境模型及其可解釋性。首先,本研究將綜合收益及其組成部分,包括權責發生制會計下的應計項目和現金流量,納入破產預測模型。 鑑於綜合收益比傳統淨利更全面地反映公司的微觀和宏觀經濟風險,本研究將檢驗其與財務比率 (FR) 結合預測破產的鑑別力。其次,先前財務困境預測 (FDP) 的研究主要依賴財務比率,而未明確區分這些比率中的長期 (LT) 和短期 (ST) 屬性。 本研究引入一種新型模型,明確區分嵌入財務比率中的長期和短期會計屬性,以解決此限制。第三,先前使用堆疊技術的財務困境研究表明,不同的屬性發揮不同的作用。 這促使我們將屬性應用於不同的基礎模型並依序使用,因為序列組合方法可提高預測性能。 因此,我們提出了一種新型模型,即優化結構和分類器的修正序列組合 (MOSCS),利用長期和短期財務比率、反映財務操縱的 Beneish 分數以及提供股價資訊的市場指標來改善財務困境預測。預測財務困境時對綜合收益及其組成部分的利用有限,可歸因於其預測能力的證據不足以及在不同地理環境中的應用有限。第四,我們調查這些模型的預測性能並提供對其可解釋性的見解。
利用美國破產和台灣財務困境數據,我們的發現證明了幾個關鍵貢獻。 首先,納入綜合損益及其組成部分顯著提高了破產預測準確性1.5%,並降低了錯誤分類成本——與僅使用傳統FR的模型相比,正確識別了額外的七家公司。 其次,區分FR中的LT和ST屬性顯著增強了財務困境預測,將準確性提高了1.5%,並將第二類錯誤降低了2.5%。 第三,所提出的MOSCS模型在預測財務困境方面優於先前的堆疊模型,達到74.56%的準確度,而先前模型為73.91%,且錯誤分類成本更低(92.10 vs. 94.44)。 此外,納入市場指標進一步提高了MOSCS的預測性能,達到75.02%的準確度,錯誤分類成本為90.42。
最後,本研究為財務利益相關者提供了寶貴的見解。 我們的分析表明,負OCI組成部分在綜合損益框架內對預測破產起著至關重要的作用。 對於財務困境預測,該模型證明了關注LT預測的“灰色區域”的重要性,並強調了謹慎優化模型結構以最大限度地減少財務困境公司錯誤分類的必要性。 這些發現有助於更深入地了解財務困境和破產預測,為財務決策提供寶貴的工具。
摘要(英) This study investigates the predictive power of various financial features for bankruptcy and distress, a novel model for distress, and their interpretability. Firstly, this study incorporates comprehensive income and its components, including accruals and cash flows, to predict bankruptcy. Recognizing that comprehensive income more comprehensively captures a firm′s micro- and macro-economic risks than traditional net income, this study examines its discriminatory power in conjunction with financial ratios (FR) for predicting bankruptcy. Secondly, prior research in financial distress prediction (FDP) has primarily relied on FR without explicitly differentiating between long-term (LT) and short-term (ST) attributes within these ratios. This study introduces a novel model that explicitly distinguishes between LT and ST accounting attributes embedded within FR to address this limitation. Thirdly, a prior distress study employing stacking techniques suggests that distinct attributes play differential roles. This motivates us to apply the feature attributes on different base models and employ them sequentially, as the serial combination approach offers to improve the predictive performance. Therefore, we propose a novel model, Modified Serial Combination with Optimized Structure and Classifiers (MOSCS), leveraging LT and ST FR, Beneish scores reflecting financial manipulation, and market-based indicators offering stock price information to improve distress prediction. The limited utilization of comprehensive income and its components in predicting financial distress can be attributed to a perceived lack of evidence regarding its predictive power and limited applicability across diverse geographic contexts. Fourth, we investigate the predictive performance of these models and provide insights into their interpretability.
This study demonstrates several key contributions using US bankruptcy and Taiwanese distress data. Firstly, incorporating comprehensive income and its components can significantly improve bankruptcy prediction accuracy by 1.5% and reduce misclassification costs ─ correctly identifying an additional seven companies compared to a traditional FR model. Secondly, distinguishing between LT and ST attributes within FR significantly enhances distress prediction, improving accuracy by 1.5% and reducing Type II errors by 2.5%. Thirdly, the proposed MOSCS model outperforms a previous stacking model in predicting distress, achieving an accuracy of 74.56% compared to 73.91% and lower misclassification costs (92.10 vs. 94.44). Furthermore, including market-based features further improves the predictive performance of MOSCS, reaching an accuracy of 75.02% with a misclassification cost of 90.42.
Finally, this study provides valuable insights for financial stakeholders. Our analysis reveals that negative (harmful) OCI components are crucial in predicting bankruptcy within the comprehensive income framework. For distress prediction, the model demonstrates the importance of focusing on the ‘gray area’’ of LT predictions and highlights the need for careful model structure optimization to minimize the misclassification of distress companies. These findings contribute to a deeper understanding of financial distress and bankruptcy prediction, offering valuable tools for financial decision-making.
關鍵字(中) ★ 財務困境預測
★ 綜合收入
★ 長期和短期屬性
★ 串行組合方法
★ 模型解釋
關鍵字(英) ★ distress prediction
★ comprehensive income
★ long-term and short-term attributes
★ serial combination approach
★ model interpretation
論文目次 摘要 i
English Abstract iii
Acknowledgment v
Table of Contents vi
List of Figures ix
List of Tables xii
Glossary xiv
Chapter 1 Introduction 1
1-1 The Importance of Predicting Distress, Including Bankruptcy 1
1-2 Challenges in Predicting Distress, Including Bankruptcy 2
1-3 Research Questions 8
1-4 Contributions 9
1-5 Research Limitations 10
Chapter 2 Background 12
2-1 Net Income and Comprehensive Income 12
2-2 Long-term (LT) and Short-term (ST) FR 13
2-3 Stacking Ensemble 14
2-4 Serial Combination Approach 14
2-5 Genetic Algorithm 14
2-6 Financial Manipulation – Beneish Score 16
2-7 Market 17
Chapter 3 Related Studies of Financial Distress Prediction 19
3-1 Components of Comprehensive Income for Prediction 19
3-2 Financial Ratios for FDP 21
3-3 Serial Combinations for FDP 21
3-4 Model Interpretation in FDP 21
Chapter 4 Proposed Solutions 25
4-1 Proposed Incorporating Comprehensive Income and Its Components for Bankruptcy
Prediction 26
4-2 Proposed splitting FR into Long-term (LT) and Short-term (ST) for FDP 26
4-3 Proposed Modifying and Optimizing Serial Combination Structures (MOSCS) for
FDP 28
4-3-1 Feature-based Training 31
4-3-2 Threshold Optimization Using Genetic Algorithm (GA) 32
4-4 Model Interpretations 40
Chapter 5 Experimental designs 44
5-1 Incorporating Comprehensive Income and Its Components for Bankruptcy
Prediction 44
5-1-1 Samples, Including Features 44
5-1-2 Model Building 49
5-1-3 Performance Measures 51
5-2 Splitting FR into Long-term (LT) and Short-term (ST) for FDP 55
5-2-1 Sample: Data Collection and Preprocessing 55
5-2-4 Model Building 59
5-2-5 Performance Measures 60
5-3 Modifying and Optimizing Serial Combination Structures (MOSCS) for FDP 61
5-3-1 Samples, Including Features 61
5-3-2 Model Building 63
5-3-3 Performance Measure 64
5-3-4 Preliminary Experiment for Baseline (????) [21] Using Stacking 64
5-4 Model Interpretations 64
Chapter 6 Experimental Results and Discussion 66
6-1 Incorporating Comprehensive Income and Its Components for Bankruptcy
Prediction 66
6-2 Splitting FR into LT and ST for FDP 69
6-3 MOSCS for FDP 72
6-4 Model Interpretations 73
6-4-1 Incorporating Comprehensive Income and Its Components 73
6-4-2 Splitting FR into LT and ST FR 75
6-4-3 MOSCS with Distinct Feature Categories 78
Chapter 7 Conclusion, Limitations, and Future Works 80
7-1 Conclusion 80
7-2 Limitation and Future Works 80
Bibliography 82
參考文獻 [1] R. Jayasekera, “Prediction of company failure: Past, present and promising directions for the future,” Int. Rev. Financ. Anal., vol. 55, pp. 196–208, 2018, doi: 10.1016/j.irfa.2017.08.009.
[2] J. Sun and H. Li, “Financial distress prediction using support vector machines: Ensemble vs. individual,” Appl. Soft Comput., vol. 12, no. 8, pp. 2254–2265, 2012, doi: 10.1016/j.asoc.2012.03.028.
[3] D. V. Dinh, R. J. Powell, and D. H. Vo, “Forecasting corporate financial distress in the Southeast Asian countries: A market-based approach,” J. Asian Econ., vol. 74, p. 101293, 2021, doi: 10.1016/j.asieco.2021.101293.
[4] J. Sun, H. Li, Q. H. Huang, and K. Y. He, “Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches,” Knowledge-Based Syst., vol. 57, pp. 41–56, 2014, doi: 10.1016/j.knosys.2013.12.006.
[5] N. Munoz-Izquierdo, E. K. Laitinen, M. del M. Camacho-Minano, and D. Pascual-Ezama, “Does audit report information improve financial distress prediction over Altman’s traditional Z-Score model?,” J. Int. Financ. Manag. Account., vol. 31, no. 1, pp. 65–97, 2020, doi: 10.1111/jifm.12110.
[6] Z. Li, J. Crook, G. Andreeva, and Y. Tang, “Predicting the risk of financial distress using corporate governance measures,” Pacific Basin Financ. J., vol. 68, no. February 2020, p. 101334, 2021, doi: 10.1016/j.pacfin.2020.101334.
[7] J. M. Gonzalez-Martin, A. J. Sanchez-Medina, and J. B. Alonso, “Optimization of the prediction of financial problems in Spanish private health companies using genetic algorithms,” Gac. Sanit., vol. 33, no. 5, pp. 462–467, 2019, doi: 10.1016/j.gaceta.2018.01.001.
[8] S. Do?an, D. Kocak, and M. Atan, “Financial distress prediction using support vector machines and logistic regression,” in Contribution to Economics, M. K. Terzio?lu, Ed., Springer, 2022, pp. 429–452. doi: 10.1007/978-3-030-85254-2_26.
[9] Y. P. Huang and M. F. Yen, “A new perspective of performance comparison among machine learning algorithms for financial distress prediction,” Appl. Soft Comput. J., vol. 83, p. 105663, 2019, doi: 10.1016/j.asoc.2019.105663.
[10] E. I. Altman, “Financial ratios, discriminant analysis and the prediction of corporate bankruptcy,” J. Finance, vol. 23, no. 4, pp. 589–609, 1968, doi: 10.2307/2978933.
[11] F. Barboza, H. Kimura, and E. Altman, “Machine learning models and bankruptcy prediction,” Expert Syst. Appl., vol. 83, pp. 405–417, 2017, doi: 10.1016/j.eswa.2017.04.006.
[12] S. Ashraf, E. G. S. Felix, and Z. Serrasqueiro, “Do traditional financial distress prediction models predict the early warning signs of financial distress?,” J. Risk Financ. Manag., vol. 12, no. 2, p. 55, 2019, doi: 10.3390/jrfm12020055.
[13] W. Qiu, S. Rudkin, and P. D?otko, “Refining understanding of corporate failure through a topological data analysis mapping of Altman’s Z-score model,” Expert Syst. Appl., vol. 156, p. 113475, 2020, doi: 10.1016/j.eswa.2020.113475.
[14] C. Larson, R. Sloan, and J. Z. Giedt, “Defining, measuring and modeling accruals: A guide for researchers,” Rev. Account. Stud., vol. 23, pp. 827–871, 2018, doi: 10.1007/s11142-018-9457-z.
[15] G. Wang, G. Chen, and Y. Chu, “A new random subspace method incorporating sentiment and textual information for financial distress prediction,” Electron. Commer. Res. Appl., vol. 29, pp. 30–49, 2018, doi: 10.1016/j.elerap.2018.03.004.
[16] S. Zeng, Y. Li, W. Yang, and Y. Li, “A financial distress prediction model based on sparse algorithm and support vector machine,” Math. Probl. Eng., vol. 2020, 2020, doi: 10.1155/2020/5625271.
[17] C.-C. Lu, A. Rahmi, Y. Liu, and D. Liang, “Feature discovery for improved financial distress prediction: Exploring the role of firm information categories,” 2024.
[18] D. Liang, C.-F. Tsai, H.-Y. Lu, and L.-S. Chang, “Combining corporate governance indicators with stacking ensemble for financial distress prediction,” J. Bus. Res., vol. 120, pp. 137–146, 2020, doi: 10.1016/j.jbusres.2020.07.052.
[19] A. Rahmi, C. Lu, D. Liang, and A. N. Fadilah, “Splitting long-term and short-term financial ratios for improved financial distress prediction: Evidence from Taiwanese public companies,” J. Forecast., no. April, pp. 1–18, 2022, doi: 10.1002/for.3143.
[20] X. Du, W. Li, S. Ruan, and L. Li, “CUS-heterogeneous ensemble-based financial distress prediction for imbalanced dataset with ensemble feature selection,” Appl. Soft Comput. J., vol. 97, 2020, doi: 10.1016/j.asoc.2020.106758.
[21] M. F. H. Komar, D. Liang, and A. Rahmi, “Financial distress prediction based on Altman ratio and Beneish M-score using stacking ensemble learning,” National Central University, Universitas Gadjah Mada, 2022.
[22] G. Wang, J. Ma, G. Chen, and Y. Yang, “Financial distress prediction: Regularized sparse-based Random Subspace with ER aggregation rule incorporating textual disclosures,” Appl. Soft Comput., vol. 90, p. 106152, 2020, doi: 10.1016/j.asoc.2020.106152.
[23] Y. Zou, C. Gao, and H. Gao, “Business failure prediction based on a cost-sensitive extreme gradient boosting machine,” IEEE Access, vol. 10, pp. 42623–42639, 2022, doi: 10.1109/ACCESS.2022.3168857.
[24] A. Tron, M. Dallocchio, S. Ferri, and F. Colantoni, “Corporate governance and financial distress: lessons learned from an unconventional approach,” J. Manag. Gov., vol. 27, pp. 425–456, 2023, doi: 10.1007/s10997-022-09643-8.
[25] J. Liu, C. Li, P. Ouyang, J. Liu, and C. Wu, “Interpreting the prediction results of the tree-based gradient boosting models for financial distress prediction with an explainable machine learning approach,” J. Forecast., vol. 42, pp. 1112–1137, 2023, doi: 10.1002/for.2931.
[26] C. Kelly and K. Okada, “Variable interaction measures with random forest classifiers,” in 2012 9th IEEE International Symposium on Biomedical Imaging, Barcelona, 2012, pp. 154–157. doi: 10.1109/ISBI.2012.6235507.
[27] D. Dhaliwal, K. R. Subramanyam, and R. Trezevant, “Is Comprehensive Income Superior to Net Income as a Measure of Firm Performance?,” J. Account. Econ., vol. 26, pp. 43–67, 1999, doi: 10.1016/S0165-4101(98)00033-0.
[28] J. Barton, T. B. Hansen, and G. Pownall, “Which Performance Measures Do Investors Around the World Value the Most-and Why?,” Account. Rev., vol. 85, no. 3, pp. 753–789, 2010, doi: 10.2308/accr.2010.85.3.753.
[29] P. Pronobis and H. Zulch, “The predictive power of comprehensive income and its individual components under IFRS,” Probl. Perspect. Manag., vol. 9, no. 4, pp. 72–88, 2011, doi: 10.2139/ssrn.1576384.
[30] E. J. Allen, C. R. Larson, and R. G. Sloan, “Accrual reversals, earnings and stock returns,” J. Account. Econ., vol. 56, no. 1, pp. 113–129, 2013, doi: 10.1016/j.jacceco.2013.05.002.
[31] R. Ball, J. Gerakos, J. T. Linnainmaa, and V. Nikolaev, “Earnings, retained earnings, and book-to-market in the cross section of expected returns,” J. financ. econ., vol. 135, no. 1, pp. 231–254, 2020, doi: 10.1016/j.jfineco.2019.05.013.
[32] S. Tian and Y. Yu, “Financial ratios and bankruptcy predictions: An international evidence,” Int. Rev. Econ. Financ., vol. 51, pp. 510–526, 2017, doi: 10.1016/j.iref.2017.07.025.
[33] Y. Jiang and S. Jones, “Corporate distress prediction in China: a machine learning approach,” Account. Financ., vol. 58, no. 4, pp. 1063–1109, 2018, doi: 10.1111/acfi.12432.
[34] A. Gepp and K. Kumar, “Business failure prediction using statistical techniques: A review,” in Some Recent Developments in Statistical Theory and Applications, K. Kumar and A. Chaturvedi, Eds., Boca Raton, Florida: Brown Walker Press, 2012, pp. 1–25.
[35] D. Wolpert, “Stacked generalization (Stacking),” Neural Networks, vol. 5, pp. 241–259, 1992.
[36] D. Liang, C. F. Tsai, A. J. Dai, and W. Eberle, “A novel classifier ensemble approach for financial distress prediction,” Knowl. Inf. Syst., vol. 54, no. 437–462, pp. 1–26, 2018, doi: 10.1007/s10115-017-1061-1.
[37] J. Sun and H. Li, “Financial distress prediction based on serial combination of multiple classifiers,” Expert Syst. Appl., vol. 36, no. 4, pp. 8659–8666, 2009, doi: 10.1016/j.eswa.2008.10.002.
[38] A. M. Abdullah, “Comparing the reliability of accounting-based and market-based prediction models,” Asian J. Account. Gov., vol. 7, no. March, pp. 41–55, 2016, doi: 10.17576/ajag-2016-07-04.
[39] M. D. Beneish, “The Detection of Earnings Manipulation,” Financ. Anal. J., vol. 55, no. 5, pp. 24–36, 1999, doi: 10.2469/faj.v55.n5.2296.
[40] M. D. Beneish, C. M. C. C. Lee, D. C. Nicholas, and D. C. Nichols, “Earnings manipulation and expected returns,” Financ. Anal. J., vol. 69, no. 2, pp. 57–82, 2013, doi: 10.2469/faj.v69.n2.1.
[41] I. Pustylnick, “Combined Algorithm for Detection of Manipulation in Financial Statements,” SSRN Electron. J., 2011, doi: 10.2139/ssrn.1422693.
[42] M. Warshavsky, “Analyzing Earnings Quality as a Financial Forensic Tool,” Financ. Valuat. Litig. Expert J., no. 39, pp. 16–20, 2012.
[43] J. MacCarthy, “Using Beneish M-Score and Altman Z-Score models to detect financial fraud and company failure,” Int. J. Financ. Account., vol. 6, no. 6, pp. 159–166, 2017, doi: 10.5937/tekstind2104020k.
[44] F. Black and M. Scholes, “The Pricing of Options and Corporate Liabilities,” J. Polit. Econ., vol. 81, no. 3, pp. 637–654, 1973.
[45] R. C. Merton, “On the Pricing of Corporate Debt?: The Risk Structure of Interest Rates,” J. Finance, vol. 29, no. 2, pp. 449–470, 1974.
[46] S. T. Bharath and T. Shumway, “Forecasting default with the Merton distance to default model,” Rev. Financ. Stud., vol. 21, no. 3, pp. 1339–1369, 2008, doi: 10.1093/rfs/hhn044.
[47] J. Anderson, Y. Cao, E. J. Riedl, and S. X. Song, “Other comprehensive income, its components, and analysts’ forecasts,” Rev. Account. Stud., 2022, doi: 10.1007/s11142-021-09656-y.
[48] R. Boulland, G. J. Lobo, and L. Paugam, “Do Investors Pay Sufficient Attention to Banks’ Unrealized Gains and Losses on Available-for-sale Securities?,” Eur. Account. Rev., vol. 28, no. 5, pp. 819–848, 2019, doi: 10.1080/09638180.2018.1562950.
[49] B. Bratten, M. Causholli, and U. Khan, “Usefulness of fair values for predicting banks’ future earnings: evidence from other comprehensive income and its components,” Rev. Account. Stud., vol. 21, no. 1, pp. 280–315, 2016, doi: 10.1007/s11142-015-9346-7.
[50] J. Lee, S. J. Lee, S. Choi, and S. Kim, “The usefulness of other comprehensive income for predicting future earnings,” J. Asian Financ. Econ. Bus., vol. 7, no. 5, pp. 31–40, 2020, doi: 10.13106/JAFEB.2020.VOL7.NO5.031.
[51] P. Du Jardin, D. Veganzones, and E. Severin, “Forecasting corporate bankruptcy using accrual-based models,” Comput. Econ., vol. 54, pp. 7–43, 2019, doi: 10.1007/s10614-017-9681-9.
[52] M. Gu, “Distress Risk, Investor Sophistication, and Accrual Anomaly,” J. Accounting, Audit. Financ., vol. 35, no. 1, pp. 79–105, 2020, doi: 10.1177/0148558X17696762.
[53] Y. Li, X. Li, E. Xiang, and H. Geri Djajadikerta, “Financial distress, internal control, and earnings management: Evidence from China,” J. Contemp. Account. Econ., vol. 16, no. 3, p. 100210, 2020, doi: 10.1016/j.jcae.2020.100210.
[54] M. Malau and E. Murwaningsari, “The effect of market pricing accrual, foreign ownership, financial distress, and leverage on the integrity of financial statements,” Econ. Ann., vol. 63, no. 217, pp. 129–139, 2018, doi: 10.2298/EKA1817129M.
[55] N. T. M. Nguyen, A. Iqbal, and R. K. Shiwakoti, “The context of earnings management and its ability to predict future stock returns,” Rev. Quant. Financ. Account., vol. 59, no. 1, pp. 123–169, 2022, doi: 10.1007/s11156-022-01041-3.
[56] P. Simlai, “Accrual mispricing, value-at-risk, and expected stock returns,” Rev. Quant. Financ. Account., vol. 57, no. 4, pp. 1487–1517, 2021, doi: 10.1007/s11156-021-00985-2.
[57] A. Kamaluddin, N. Ishak, and N. F. Mohammed, “Financial distress prediction through cash flow ratios analysis,” Int. J. Financ. Res., vol. 10, no. 3, pp. 63–76, 2019, doi: 10.5430/ijfr.v10n3p63.
[58] J. Almamy, J. Aston, and L. N. Ngwa, “An evaluation of Altman’s Z-score using cash flow ratio to predict corporate failure amid the recent financial crisis: Evidence from the UK,” J. Corp. Financ., vol. 36, pp. 278–285, 2016, doi: 10.1016/j.jcorpfin.2015.12.009.
[59] J. Horak, J. Vrbka, and P. Suler, “Support vector machine methods and artificial neural networks used for the development of bankruptcy prediction models and their comparison,” J. Risk Financ. Manag., vol. 13, no. 3, p. 60, 2020, doi: 10.3390/jrfm13030060.
[60] D. Neagu, G. Guo, and S. Wang, “An effective combination based on class-wise expertise of diverse classifiers for predictive toxicology data mining,” in International Conference on Advanced Data Mining and Applications, 2006, pp. 165–172. doi: 10.1007/11811305_18.
[61] S. Lahmiri, A. Giakoumelou, and S. Bekiros, “An adaptive sequential-filtering learning system for credit risk modeling,” Soft Comput., vol. 25, no. 13, pp. 8817–8824, 2021, doi: 10.1007/s00500-021-05833-y.
[62] C. F. Tsai and Y. T. Sung, “Ensemble feature selection in high dimension, low sample size datasets: Parallel and serial combination approaches,” Knowledge-Based Syst., vol. 203, p. 106097, 2020, doi: 10.1016/j.knosys.2020.106097.
[63] K. Tanaka, T. Kinkyo, and S. Hamori, “Random forests-based early warning system for bank failures,” Econ. Lett., vol. 148, pp. 118–121, 2016, doi: 10.1016/j.econlet.2016.09.024.
[64] J. Li, J. D. Malley, A. S. Andrew, M. R. Karagas, and J. H. Moore, “Detecting Gene-Gene Interactions Using a Permutation-based Random Forest Method,” BioData Min., vol. 9, no. 14, pp. 1–17, 2016, doi: 10.1186/s13040-016-0093-5.
[65] W. Liu, H. Fan, M. Xia, and C. Pang, “Predicting and interpreting financial distress using a weighted boosted tree-based tree,” Eng. Appl. Artif. Intell., vol. 116, p. 105466, 2022, doi: https://doi.org/10.1016/j.engappai.2022.105466.
[66] D. Veganzones and E. Severin, “An investigation of bankruptcy prediction in imbalanced datasets,” Decis. Support Syst., vol. 112, pp. 111–124, 2018, doi: 10.1016/j.dss.2018.06.011.
[67] E. Goh, S. M. Roni, and D. Bannigidadmath, “Thomas Cook(ed): using Altman’s z-score analysis to examine predictors of financial bankruptcy in tourism and hospitality businesses,” Asia Pacific J. Mark. Logist., vol. 34, no. 3, pp. 475–487, 2022, doi: 10.1108/APJML-02-2021-0126.
[68] A. Rahmi, C. Lu, D. Liang, and A. N. Fadilah, “Splitting long-term and short-term financial ratios for improved financial distress prediction?: Evidence from Taiwanese public companies,” J. Forecast., no. April, pp. 1–18, 2024, doi: 10.1002/for.3143.
[69] F. Antunes, B. Ribeiro, and F. Pereira, “Probabilistic Modeling and Visualization for Bankruptcy Prediction,” Appl. Soft Comput., vol. 60, pp. 831–843, 2017, doi: 10.1016/j.asoc.2017.06.043.
[70] U. Farooq and M. A. J. Qamar, “Predicting multistage financial distress: Reflections on sampling, feature and model selection criteria,” J. Forecast., vol. 38, no. 7, pp. 632–648, 2019, doi: 10.1002/for.2588.
[71] E. J. Boritz and D. B. Kennedy, “Effectiveness of Neural Network Types for Prediction of Business Failure,” Expert Syst. Appl., vol. 9, no. 4, pp. 503–512, 1995, doi: 10.1016/0957-4174(95)00020-8.
[72] J. Dem?ar, “Statistical Comparisons of Classifiers over Multiple Data Sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, 2006.
[73] C. H. Mu, J. Xie, Y. Liu, F. Chen, Y. Liu, and L. C. Jiao, “Memetic Algorithm with Simulated Annealing Strategy and Tightness Greedy Optimization for Community Detection in Networks,” Appl. Soft Comput., vol. 34, pp. 485–501, 2015, doi: 10.1016/j.asoc.2015.05.034.
[74] S. Choi and P. R. Messinger, “The Role of Fairness in Competitive Supply Chain Relationships: An Experimental Study,” Eur. J. Oper. Res., vol. 251, pp. 798–813, 2016, doi: 10.1016/j.ejor.2015.12.001.
[75] C.-H. Chou, S.-C. Hsieh, and C.-J. Qiu, “Hybrid genetic algorithm and fuzzy clustering for bankruptcy prediction,” Appl. Soft Comput., vol. 56, pp. 298–316, 2017, doi: 10.1016/j.asoc.2017.03.014.
[76] Y.-C. Ko, H. Fujita, and T. Li, “An evidential analysis of Altman Z-score for financial predictions: Case study on solar energy companies,” Appl. Soft Comput., vol. 52, pp. 748–759, 2017, doi: 10.1016/j.asoc.2016.09.050.
[77] A. Rahmi, H. Y. Lu, D. Liang, D. Novitasari, and C. F. Tsai, “Role of comprehensive income in predicting bankruptcy,” Comput. Econ., vol. 62, pp. 689–720, 2023, doi: 10.1007/s10614-022-10328-5.
指導教授 梁德容(Deron Liang) 審核日期 2025-1-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明