博碩士論文 111522163 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:102 、訪客IP:3.139.85.192
姓名 藍光玄(Kuang-Hsuan Lan)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 使用生理數據分析的VR與科氏力動暈誘發系統, 增進動暈抗性與動暈下認知決策功能及通過多次訓練表現驗證系統有效性
(Enhancing Motion Sickness Resistance and Task Performance Through VR and Coriolis Force Exposur事)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究提出整合VR與旋轉椅的動暈訓練系統,系統包含生理資料的測量與分析,探討動暈狀態下的生理狀態與認知功能的表現。主要的研究目的在於透過評估動暈感受性的生理指標與認知任務表現,驗證動暈訓練系統的有效性。過去的研究表明動暈在多種情況下可能造成的風險,如飛行期間,動暈引起的身體不適或認知損害可能會造成無法挽回的結果。而在動暈狀態下保持穩定認知功能水平對於飛行員在執行任務期間也尤其重要。然而,先前的研究缺乏結合動暈感受性以及動暈下認知功能的訓練。本研究透過同步控制VR與旋轉椅,能夠模擬飛行員在實際飛行時,暴露於動暈誘發環境的同時需要利用高強度的認知功能處理任務的情境。系統同時整合多模態生理感測器(EEG、眼動追蹤、HRV),透過統計分析評估動暈訓練前後的差異,並結合多模態數據融合的機器學習方法,驗證訓練系統的有效性。我們的研究實驗對象涉及一般組與運動組,兩組人員都有進行多次的訓練。結果表明透過整合VR與旋轉椅的訓練系統除了可以有效誘發動暈外,在經過反覆暴露在動暈下的過程,可以提升對抗動暈的感受性,以及提升動暈下的認知功能。多模態生理資料分析與主觀問卷的資料結合提供了評估動暈的指標。研究證明基於還原真實飛行情境的VR與旋轉椅訓練系統可以有效提升動暈感受性與動暈狀態下的認知功能,並提供一般組與運動組在動暈訓練上不同的見解。
摘要(英) This study proposes an integrated VR and rotary chair motion sickness training system, which includes physiological data measurement and analysis to investigate the physiological state and cognitive performance under motion sickness conditions. The primary research objective is to evaluate physiological indicators of motion sickness susceptibility and cognitive task performance, validating the effectiveness of the motion sickness training system.
Previous studies have shown that motion sickness can pose significant risks in various scenarios, such as during flight, where discomfort or cognitive impairment caused by motion sickness may lead to catastrophic consequences. Maintaining stable cognitive function during motion sickness is particularly crucial for pilots performing tasks. However, prior research lacks comprehensive training that combines motion sickness susceptibility and cognitive function under motion sickness conditions. By synchronizing the control of VR and a rotary chair, this study simulates scenarios where pilots are exposed to motion-sickness-inducing environments while simultaneously engaging in high-intensity cognitive tasks. The system integrates multimodal physiological sensors (EEG, eye tracking, HRV) to assess differences before and after motion sickness training through statistical analysis. Additionally, machine learning methods for multimodal data fusion are employed to validate the effectiveness of the training system.
The study involves participants from both a general group and an athlete group, with both groups undergoing multiple training sessions. The results demonstrate that the integrated VR and rotary chair training system effectively induces motion sickness and, through repeated exposure, enhances resistance to motion sickness and cognitive performance under motion sickness conditions. The combination of multimodal physiological data analysis and subjective questionnaires provides indicators for assessing motion sickness. The research confirms that the VR and rotary chair training system, which replicates realistic flight scenarios, effectively improves motion sickness susceptibility and cognitive function during motion sickness. It also provides insights into the differences between the general and athlete groups in motion sickness training.
關鍵字(中) ★ 動暈
★ 動暈抗性訓練
★ 虛擬現實
★ 認知處理表現
★ 腦電圖 (EEG)
★ 心率變異性 (HRV)
★ 眼動追蹤
關鍵字(英) ★ Motion Sickness
★ Motion Sickness Resistance Training
★ Virtual Reality
★ Cognitive Performance
★ EEG
★ HRV
★ Eye-Tracking
論文目次 摘要 I
Abstract III
致謝 V
Table of Contents VI
List of Figures VII
List of Tables IX
1. Introduction 1
2. Related Work 6
3. Method 14
4. Result 34
5. Discussion 70
6. Conclusion 77
Reference 79
參考文獻 [1] Lackner, James R. “Motion sickness: more than nausea and vomiting.” Experimental brain research vol. 232,8 (2014): 2493-510. doi:10.1007/s00221-014-4008-8
[2] Cha, Yoon-Hee et al. ‘Motion Sickness Diagnostic Criteria: Consensus Document of the Classification Committee of the Barany Society’. 1 Jan. 2021 : 327 – 344.
[3] Matsangas, P., McCauley, M. E., & Becker, W. (2014). The Effect of Mild Motion Sickness and Sopite Syndrome on Multitasking Cognitive Performance. Human Factors, 56(6), 1124-1135. https://doi.org/10.1177/0018720814522484
[4] Dobie, T.G. (2019). Incidence of Motion Sickness. In: Motion Sickness. Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping, vol 6. Springer, Cham. https://doi.org/10.1007/978-3-319-97493-4_2
[5] Karrim, N., Byrne, R., Magula, N., & Saman, Y. (2022). Antihistamines for motion sickness.. The Cochrane database of systematic reviews, 10, CD012715 . https://doi.org/10.1002/14651858.CD012715.pub2.
[6] Cha, Yoon-Hee et al. ‘Motion Sickness Diagnostic Criteria: Consensus Document of the Classification Committee of the Barany Society’. 1 Jan. 2021 : 327 – 344.
[7] Singh, Anshika & Kumar, Sanjai & Meena, Raj. (2016). Role of Vestibular Adaptation Exercises on Motion Sickness. Physiotherapy and Occupational Therapy Journal. 9. 95-102. 10.21088/potj.0974.5777.9316.3.
[8] Rolnick A, Lubow RE. Why is the driver rarely motion sick? The role of controllability in motion sickness. Ergonomics. 1991 Jul;34(7):867-79. doi: 10.1080/00140139108964831. PMID: 1915252.
[9] Dobie T, McBride D, Dobie T Jr, May J. The effects of age and sex on susceptibility to motion sickness. Aviat Space Environ Med. 2001 Jan;72(1):13-20. PMID: 11194988.
[10] Nachum, Z., Shupak, A., Letichevsky, V., Ben-David, J., Tal, D., Tamir, A., & Talmon, Y. (2004). Vestibular adaptation to simulated flight maneuvers in a motion sickness desensitization program. Aviation, Space, and Environmental Medicine, 75(5), 425–431.
[11] Mark Dennison Jr., Mike D′Zmura, Andre Harrison, Michael Lee, and Adrienne Raglin "Improving motion sickness severity classification through multi-modal data fusion", Proc. SPIE 11006, Artificial Intelligence and Machine Learning for Multi-Domain Operations Applications, 110060T (10 May 2019); https://doi.org/10.1117/12.2519085
[12] H. Wang et al., "A Survey on the Metaverse: The State-of-the-Art, Technologies, Applications, and Challenges," in IEEE Internet of Things Journal, vol. 10, no. 16, pp. 14671-14688, 15 Aug.15, 2023, doi: 10.1109/JIOT.2023.3278329.
[13] Joseph S et al, “A novel method for reducing motion sickness susceptibility through training visuospatial ability – A two-part study”,Applied Ergonomics,Volume 90,2021,103264,ISSN 0003-6870,https://doi.org/10.1016/j.apergo.2020.103264.
[14] Wang F, Pan S, Li XW, Lu JM, Qiu CJ, Jiang MH, Jin ZG, Yan SG. Training of spatial cognitive abilities reduces symptoms of visually induced motion sickness. Front Psychol. 2024 Sep 2;15:1415552. doi: 10.3389/fpsyg.2024.1415552. PMID: 39286562; PMCID: PMC11404689.
[15] Merfeld DM, Zupan L, Peterka RJ. Humans use internal models to estimate gravity and linear acceleration. Nature. 1999 Apr 15;398(6728):615-8. doi: 10.1038/19303. PMID: 10217143.
[16] Mark Stephen Dennison, Michael D’Zmura, “Cybersickness without the wobble: Experimental results speak against postural instability theory”, Applied Ergonomics, Volume 58,2017, Pages 215-223,ISSN 0003-6870,doi.org/10.1016/j.apergo.2016.06.014.
[17] Lackner JR, Dizio P. Space motion sickness. Exp Brain Res. 2006 Nov;175(3):377-99. doi: 10.1007/s00221-006-0697-y. Epub 2006 Oct 5. PMID: 17021896.
[18] Golding JF. Motion sickness susceptibility. Auton Neurosci. 2006 Oct 30;129(1-2):67-76. doi: 10.1016/j.autneu.2006.07.019. Epub 2006 Aug 23. PMID: 16931173.
[19] Young, Laurence R. et al. ‘Adaptation of the Vestibulo-ocular Reflex, Subjective Tilt, and Motion Sickness to Head Movements During Short-radius Centrifugation’. 1 Jan. 2003 : 65 – 77.
[20] Keshavarz, Behrang & Hecht, Heiko & Lawson, Ben. (2014). Visually induced motion sickness: Characteristics, causes, and countermeasures. 10.1201/b17360-32.
[21] Gianaros, P J et al. “A questionnaire for the assessment of the multiple dimensions of motion sickness.” Aviation, space, and environmental medicine vol. 72,2 (2001): 115-9.
[22] Yeo SS, Kwon JW, Park SY. EEG-based analysis of various sensory stimulation effects to reduce visually induced motion sickness in virtual reality. Sci Rep. 2022 Oct 27;12(1):18043. doi: 10.1038/s41598-022-21307-z. PMID: 36302810; PMCID: PMC9613667.
[23] Yu Jiaodan , Wan Yi , Zhao Jieli , Huang Ruonan , Wu Peixia , Li Wenyan , “Normative data for rotational chair considering motion susceptibility”,Frontiers in Neurology,13,2022,DOI=10.3389/fneur.2022.978442,ISSN:1664-2295
[24] Miyazaki J, Yamamoto H, Ichimura Y, Yamashiro H, Murase T, Yamamoto T, Umeda M, Higuchi T. Inter-hemispheric desynchronization of the human MT+ during visually induced motion sickness. Exp Brain Res. 2015 Aug;233(8):2421-31. doi: 10.1007/s00221-015-4312-y. Epub 2015 May 28. PMID: 26014459.
[25] Wei, Yue & Wang, Yixuan & Okazaki, Yuka & Kitajo, Keiichi & Richard, ‧ & So, Richard. (2023). Motion sickness resistant people showed suppressed steady-state visually evoked potential (SSVEP) under vection-inducing stimulation. Cognitive Neurodynamics. 10.1007/s11571-023-09991-7(.
[26] Wang R, Yan Y, Tie Y, Zhang Q, Pan Y, Li S, Fan J, Li C, Li X, Wang Y, Sun X, Zhang T, Zhao X. Hypoxic acclimatization training improves the resistance to motion sickness. Front Neurosci. 2023 Dec 6;17:1216998. doi: 10.3389/fnins.2023.1216998. PMID: 38125401; PMCID: PMC10731277.
[27] Papaioannou T, Voinescu A, Petrini K, Stanton Fraser D. Efficacy and Moderators of Virtual Reality for Cognitive Training in People with Dementia and Mild Cognitive Impairment: A Systematic Review and Meta-Analysis. J Alzheimers Dis. 2022;88(4):1341-1370. doi: 10.3233/JAD-210672. PMID: 35811514.
[28] Moulaei K, Sharifi H, Bahaadinbeigy K, Dinari F. Efficacy of virtual reality-based training programs and games on the improvement of cognitive disorders in patients: a systematic review and meta-analysis. BMC Psychiatry. 2024 Feb 12;24(1):116. doi: 10.1186/s12888-024-05563-z. PMID: 38342912; PMCID: PMC10860230.
[29] Tim van Timmeren et al. ”Compulsivity-related neurocognitive performance deficits in gambling disorder: A systematic review and meta-analysis”. Neuroscience & Biobehavioral Reviews,Volume 84,2018,Pages 204-217,ISSN 0149-7634,https://doi.org/10.1016/j.neubiorev.2017.11.022.
[30] Tu, M.-Y.; Chu, H.; Lai, C.-Y.; Chiang, K.-T.; Huang, C.-C.; Chin, H.-C.; Wen, Y.-H.; Chen, C.-L. Effect of Standardized Yelling on Subjective Perception and Autonomic Nervous System Activity in Motion Sickness. Int. J. Environ. Res. Public Health 2021, 18, 12854. https://doi.org/10.3390/ijerph182312854
[31] G. Marquart, C. Cabrall and J. de Winter ,“Review of eye-related measures of drivers’ mental workload”, Procedia Manuf., vol. 3, pp. 2854-2861, 2015
[32] Fabian Theurl et al. “Smartwatch-derived heart rate variability: a head-to-head comparison with the gold standard in cardiovascular disease”, European Heart Journal - Digital Health, Volume 4, Issue 3, May 2023, Pages 155–164, https://doi.org/10.1093/ehjdh/ztad022
[33] Attar ET, Balasubramanian V, Subasi E, Kaya M. Stress Analysis Based on Simultaneous Heart Rate Variability and EEG Monitoring. IEEE J Transl Eng Health Med. 2021 Aug 23;9:2700607. doi: 10.1109/JTEHM.2021.3106803. PMID: 34513342; PMCID: PMC8407658.
指導教授 葉士青 吳曉光 陳純娟(Shih-Ching Yeh Hsiao-Kuang Wu Chun-Chuan Chen) 審核日期 2025-2-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明