博碩士論文 111521111 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.191.28.129
姓名 蔡舜羽(Shun-Yu Tsai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於FR3頻段互補式金氧半導體堆疊式功率放大器暨使用開關鍵控調變器之發射機與連續F類氮化鎵功率放大器研製
(Design and Implementation of CMOS Stacked Power Amplifier, On-Off Keying Modulation Transmitter, and Continuous Class-F GaN Power Amplifier for FR3 Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文使用台灣積體電路製造股份有限公司 (tsmcTM) 0.18-μm CMOS製程設計的互補式金氧半導體堆疊式功率放大器與90-nm CMOS製程的使用開關鍵控調變器之發射機,以及穩懋半導體公司(WINTM)之0.25-μm GaN製程設計的連續F類氮化鎵功率放大器。
第一顆晶片提出應用於X頻段之互補式金氧半導體功率放大器,透過堆疊式結構增加輸出擺幅,並適當選擇偏壓點提升線性度,拉近了飽和輸出功率與1-dB增益壓縮點功率的距離。其操作頻寬為8.5 - 10.5 GHz,最大傳輸增益為15.1 dB,最大輸出功率為24.4 dBm,1-dB增益壓縮點輸出功率為21.8 dBm,最高附加效率為16.2%,晶片面積為2.6 mm2 (2.23 mm × 1.18 mm) 。
第二顆晶片提出使用開關鍵控之發射機電路,本地震盪源使用一變壓器回授壓控震盪器,達到穩定輸出訊號,並控制調變器的開關,獲得穩定的高速調變訊號,最後透過放大器將訊號送出,操作頻率為9.1 – 10.01 GHz,最快資料傳輸速率為7.2 Gbps,能量轉換效率為4 pJ/bit,在位移頻率為1MHz下,最佳相位雜訊為-114.8 dBc/Hz,輸出功率為3.4 dBm,隔離度為34.4 dB,晶片面積為0.81 mm2 (1.24 mm × 0.66 mm)。
第三顆晶片為連續F類功率放大器,輸出匹配網路採用F類連續模式,藉以提升電路整體效率。其操作頻寬為10 -12 GHz,最大傳輸增益為10 dB,最大輸出功率為35.4 dBm,最高附加效率為28.7%,晶片面積為2.5 mm2 (2.5 mm × 1 mm) 。
摘要(英) This thesis presents the design of a complementary metal-oxide-semiconductor (CMOS) stacked power amplifier utilizing TSMC′s 0.18-μm CMOS process, an on-off keying (OOK) modulation transmitter employing a 90-nm CMOS process, and a continuous Class-F GaN power amplifier implemented with WIN′s 0.25-μm GaN process
The first chip is a CMOS power amplifier designed for X-band applications. Utilizing a stacked structure increases the output swing and enhances linearity by selecting optimal bias points, thereby reducing the gap between the saturated output power and the 1-dB gain compression point. It operates within a bandwidth of 8.5 - 10.5 GHz, achieving a maximum gain of 15.1 dB, a maximum output power of 24.4 dBm, an output power of 21.8 dBm at the 1-dB compression point, and a peak power-added efficiency (PAE) of 16.2%. The chip occupies an area of 2.6 mm2 (2.23 mm × 1.18 mm).
The second chip is a transmitter circuit utilizing on-off keying (OOK) modulation. A transformer-feedback voltage-controlled oscillator (VCO) serves as the local oscillator, generating a stable output signal. Externally controlled modulator switches produce a high-speed modulated signal, which is then amplified and transmitted via a power amplifier. The circuit operates at a frequency range of 9.1 - 10.01 GHz, supports a maximum data rate of 7.2 Gbps, and achieves an energy efficiency of 4 pJ/bit. The phase noise is -114.8 dBc/Hz at a 1 MHz offset, with an output power of 3.4 dBm and isolation of 34.4 dB. The chip area is 0.81 mm2 (1.24 mm × 0.66 mm).
The third chip is a continuous Class-F power amplifier, incorporating a continuous-mode F matching network to enhance overall circuit efficiency. It operates within a bandwidth of 10 - 12 GHz, achieving a maximum gain of 10 dB, a maximum output power of 35.4 dBm, and a peak power-added efficiency (PAE) of 28.7%. The chip occupies an area of 2.5 mm2 (2.5 mm × 1 mm).
關鍵字(中) ★ 功率放大器
★ 發射機
★ 射頻IC
關鍵字(英) ★ Power Amplifier
★ Transmitter
★ RFIC
論文目次 摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 x
表目錄 xv
第一章 緒論 1
1-1 研究動機 1
1-2 研究成果 2
1-3 章節簡介 2
第二章 應用於X頻段之互補式金氧半導體堆疊式功率放大器 3
2-1 研究現況 3
2-2 堆疊式功率放大器結構介紹 5
2-3 磁耦合共振腔簡介 8
2-3-1對稱型磁耦合共振腔 10
2-3-2非對稱型磁耦合共振腔 13
2-3-3雙路並聯之磁耦合共振腔 16
2-4 應用於X頻段之互補式金氧半導體堆疊式功率放大器 17
2-4-1電路架構圖 17
2-4-2電晶體偏壓選擇 19
2-4-3輸出匹配網路設計 22
2-4-4級間與輸入匹配網路設計 28
2-4-5電路模擬與量測結果 36
2-4-6電路重新模擬分析與探討 49
2-4-7結果比較與討論 52
第三章 應用於無線網路感測之X頻段開關鍵控發射機 56
3-1 研究現況 56
3-2 系統分析 57
3-3 開關鍵控調變器介紹 61
3-4 本地震盪器介紹 66
3-5應用於無線網路感測之X頻段開關鍵控發射機 70
3-5-1 開關鍵控發射機之電路設計 70
3-5-2 功率放大器設計 72
3-5-3 壓控震盪器設計 78
3-5-4 電路模擬與量測結果 83
3-5-5 結果比較與討論 92
第四章 應用於X頻段之連續F類氮化鎵功率放大器 95
4-1 研究現況 95
4-2 F類連續模式操作介紹 96
4-3 連續F類功率放大器 100
4-3-1 電路架構圖 100
4-3-2 電晶體尺寸及偏壓選擇 102
4-3-3 輸出匹配網路設計 105
4-3-4 電路模擬與量測結果 113
4-3-5 結果比較與討論 125
第五章 結論 128
5-1 總結 128
5-2 未來方向 129
參考文獻 130
參考文獻 [1] J. Orellana-Alvear, R. Celleri, R. Rollenbeck and J. Bendix, “Optimization of X-band radar rainfall retrieval in the southern andes of ecuador using a random forest model,” Remote Sens., vol. 11, no. 14, pp. 1632, Jul. 2019.
[2] S. Altunc, O. Kegege, S. Bundick, H. Shaw and S. Schaire, “X-band cubesat communication system demonstration,” AIAA/USU Conf. Small Satell., pp. 1-9, Aug. 2015.
[3] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, “A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS,”IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[4] H. W. Choi, S. Choi, J. T. Lim and C. Y. Kim, “1-W, high-gain, high-efficiency, and compact sub-GHz linear power amplifier employing a 1:1 transformer balun in 180-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 779-781, Aug. 2020.
[5] H. F. Wu, Q. F. Cheng, X. G. Li and H. P. Fu, “Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
[6] Y. C. Lee, T. Y. Chen and J. Y. C. Liu, “An adaptively biased stacked power amplifier without output matching network in 90-nm CMOS,” in 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1667-1690.
[7] J. A. Jayamon, J. F. Buckwalter and P. M. Asbeck, “Multigate-cell stacked FET design for millimeter-wave CMOS power amplifiers,” IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2027-2039, Sep. 2016.
[8] K. Onizuka, H. Ishihara, M. Hosoya, S. Saigusa, O. Watanabe and S. Otaka, “A 1.9 GHz CMOS power amplifier with embedded linearizer to compensate AM-PM distortion,” IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1820-1827, Aug. 2012.
[9] C. Li, C. Kuo and M. Kuo, “A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-??m CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[10] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, “A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657-2668, Sep. 2018.
[11] C. Alexander and M. Sadiku, Fundamentals of Electric Circuits, 2nd. New York: McGraw-Hill, 2004.
[12] G. Jin, N. Yan, Y. Lin, and H. Xu, “A linear CMOS power amplifier with efficiency-optimized transformer matching,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 9, pp. 1059-1062, Sep. 2022.
[13] MediaTek-6G-Vision-White-Paper-EN0122
[14] 3GPP TR 38.820 V16.1.0 (2021-03)
[15] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[16] F. Wang and H. Wang, “A broadband linear ultra-compact mm-wave power amplifier with distributed-balun output network: analysis and design,” IEEE Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2308-2323, Aug. 2021.
[17] 謝宜樺,「MOS 場效電晶體之溫度效應探討:基於 180-nm CMOS 製程電路模擬」,國立勤益科技大學,碩士論文,民國104年
[18] K. Choi, M. Kim, H. C. Kim, H. Cho, J. Cho, S. Yoo, K. Yang, S. Jung, S. Ryu, and Y. Yang, “CMOS up-conversion mixer with adaptive bias circuit for UHF RFID reader,” in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Singapore, 2009, pp. 20-23
[19] V. Trinh, H. Nam and J. Park, “A 20.5-dBm X -band power amplifier with a 1.2-V supply in 65-nm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 234-236, Mar. 2019.
[20] P.-C. Huang, K.-Y. Lin and H. Wang, “A 4 GHz - 17 GHz Darlington cascode broadband medium power amplifier in 0.18- um CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 1, pp. 43-45, Jan. 2010.
[21] J. Ko and S. Nam, “A two-stage S-/X-band CMOS power amplifier for high-resolution radar transceivers,” IEEE Microwave and Wireless Components Letters, vol. 28, no. 7, pp. 606-608, Jul. 2018.
[22] A. V. Vasylyev, P. Weger, W. Bakalski and W. Simbuerger, “17-GHz 50–60 mW power amplifiers in 0.13-um standard CMOS,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 1, pp. 37-39, Jan. 2006.
[23] Y. Wang, B. Liu, R. Wu, H. Liu, A. T. Narayanan, J. Pang, N. Li, T. Yoshioka, Y. Terashima, H. Zhang, D. Tang, M. Katsuragi, D. Lee, S. Choi, K.Okada and A. Matsuzawa, “A 60-GHz 3.0-Gb/s spectrum efficient BPOOK transceiver for low-power short-range wireless in 65-nm CMOS,”IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1363-1374, May 2019.
[24] K. C. Mojjada, D. Kim and W. R. Eisenstadt, “A 6 pJ/bit transmitter front end in 130 nm CMOS technology for wireless interconnect,” in 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 2015, pp. 1-3.
[25] J. Tao , N. Wang, E. J. Ng, Y. Zhu, and C. H. Heng, “A 5-pJ/bit OOK transmitter using MEMS-Based RF oscillator for IoT application in 180-nm CMOS,”IEEE Microwave and Wireless Components Letters, vol. 31, no. 10, pp.1158-1161, Oct. 2021
[26] C. C. Lin, H. Hu and S. Gupta, “ Spur minimization techniques for ultra-low-power injection-locked transmitters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 11, pp. 3643-3655, Nov. 2020.
[27] X. Yu, S. P. Sah, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo, “ A 1.2-pJ/bit 16-Gb/s 60-GHz OOK transmitter in 65-nm CMOS for wireless network-on-chip,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 10, pp. 2357-2369, Oct. 2014.
[28] P. Zhang, F. M. J. Willems, and L. Huang, “ Investigations of noncoherent OOK based schemes with soft and hard decisions for WSNs,” in 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2011, pp. 1702-1709.
[29] S. Deb et al., “ Design of an energy-efficient CMOS-compatible NoC architecture with millimeter-wave wireless interconnects,” IEEE Transactions on Computers, vol. 62, no. 12, pp. 2382-2396, Dec. 2013.
[30] 黃禮賢,「互補式金氧半導體Ku頻段寬頻功率放大器與K頻段開關鍵控發射機暨X頻段氮化鎵瓦特級功率放大器之研製」,國立中央大學,碩士論文,民國108年。
[31] M. Uzunkol and G. M. Rebeiz, “A low-loss 50 70 GHz SPDT switch in 90 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 2003-2007, Oct. 2010.
[32] Y. Um and C. Nguyen, “High-isolation multimode multifunction 24-/60-GHz CMOS dual-bandpass filtering T/R Switch,” IEEE Microwave and Wireless Components Letters, vol. 28, no. 8, pp. 696-698, Aug. 2018
[33] P. Huang, K. Lin, and H. Wang, “A 4–17 GHz darlington cascode broadband medium power amplifier in 0.18-μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 1, pp. 43-45, Jan. 2010.
[34] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[35] K. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp.652-660, Mar. 2005.
[36] R. Hartley, “Oscillation generator,” U.S.Patent1, pp.356-763,Oct.26,1920.
[37] K. C. Mojjada, D. Kim and W. R. Eisenstadt, “A 6 pJ/bit transmitter front end in 130 nm CMOS technology for wireless interconnect,” in IEEE 16th Annual. Wireless Microw. Technol. Conf. (WAMICON), Apr. 2015. pp. 1-3.
[38] S. Geng, D. Liu, Y. Li, H. Zhuo, W. Rhee and Z. Wang, “A 13.3 mW 500 Mb/s IR-UWB transceiver with link margin enhancement technique for meter-range communications,” IEEE Journal of Solid-State Circuits, vol. 50, no. 3, pp. 669-678, Mar. 2015.
[39] Y. Liu, H. Song, K. Zeng, W. Rhee, Z. Wong , “A 9mW 6-9GHz 2.5Gb/s proximity transmitter with combined OOK/BPSK modulation for low power mobile connectivity ,” in IEEE 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2019, pp.1-4.
[40] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. A. Rusch and B. Gosselin, “A single-chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants,” IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 3, pp. 643-653, Jun. 2016.
[41] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, “On the continuity of high efficiency modes in linear RF power amplifiers,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 665-667, Oct. 2009.
[42] P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, “A methodology for realizing high efficiency class-J in a linear and broadband PA,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3196–3204, Dec. 2009.
[43] A. K. Kumaran, M. Pashaeifar, M. D’Avino, L. C. N. de Vreede and M. S. Alavi, “On-chip output stage design for a continuous class-F power amplifier,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5.
[44] N. Tuffy, L. Guan, A. Zhu and T. J. Brazil, “A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1952-1963, Jun. 2012.
[45] G. Nikandish, R. B. Staszewski and A. Zhu, “Design of highly linear broadband
continuous mode GaN MMIC power amplifiers for 5G,” IEEE Access, vol. 7, pp.
57138-57150, 2019.
[46] I. Ju and J. D. Cressler, “An X-band inverse class-F SiGe HBT cascode power amplifier with harmonic-tuned output transformer,” in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, USA, 2017, pp. 390-393.
[47] D. J. Niven, S. J. Mahon, M. C. Heimlich , “ X-Band GaN Stacked-FET Power Amplifier,” in 2023 IEEE 5th Australian Microwave Symposium, Melbourne, Australia, Feb. 2023. pp. 19-20.
[48] T. Senju, K. Takagi and H. Kimura , “ A 2 W 45 % PAE X-band GaN HEMT class-F MMIC power amplifier,” in 2018 IEEE Asia-Pacific Microwave Conference (APMC), 2018. pp. 956-958.
[49] C. Liu, Q. Li, Y. Li, X. Li, H. Liu and Y. Z. Xiong, “An 890 mW stacked power amplifier using SiGe HBTs for X-band multifunctional chips,” in IEEE ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC), Graz, Austria, Sep. 2015, pp. 68-71.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2024-10-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明