參考文獻 |
[1] J. Orellana-Alvear, R. Celleri, R. Rollenbeck and J. Bendix, “Optimization of X-band radar rainfall retrieval in the southern andes of ecuador using a random forest model,” Remote Sens., vol. 11, no. 14, pp. 1632, Jul. 2019.
[2] S. Altunc, O. Kegege, S. Bundick, H. Shaw and S. Schaire, “X-band cubesat communication system demonstration,” AIAA/USU Conf. Small Satell., pp. 1-9, Aug. 2015.
[3] S. Pornpromlikit, J. Jeong, C. D. Presti, A. Scuderi and P. M. Asbeck, “A watt-level stacked-FET linear power amplifier in silicon-on-insulator CMOS,”IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 1, pp. 57-64, Jan. 2010.
[4] H. W. Choi, S. Choi, J. T. Lim and C. Y. Kim, “1-W, high-gain, high-efficiency, and compact sub-GHz linear power amplifier employing a 1:1 transformer balun in 180-nm CMOS,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 8, pp. 779-781, Aug. 2020.
[5] H. F. Wu, Q. F. Cheng, X. G. Li and H. P. Fu, “Analysis and design of an ultrabroadband stacked power amplifier in CMOS technology,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 63, no. 1, pp. 49-53, Jan. 2016.
[6] Y. C. Lee, T. Y. Chen and J. Y. C. Liu, “An adaptively biased stacked power amplifier without output matching network in 90-nm CMOS,” in 2017 IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1667-1690.
[7] J. A. Jayamon, J. F. Buckwalter and P. M. Asbeck, “Multigate-cell stacked FET design for millimeter-wave CMOS power amplifiers,” IEEE Journal of Solid-State Circuits, vol. 51, no. 9, pp. 2027-2039, Sep. 2016.
[8] K. Onizuka, H. Ishihara, M. Hosoya, S. Saigusa, O. Watanabe and S. Otaka, “A 1.9 GHz CMOS power amplifier with embedded linearizer to compensate AM-PM distortion,” IEEE Journal of Solid-State Circuits, vol. 47, no. 8, pp. 1820-1827, Aug. 2012.
[9] C. Li, C. Kuo and M. Kuo, “A 1.2-V 5.2-mW 20–30-GHz wideband receiver front-end in 0.18-??m CMOS,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 11, pp. 3502-3512, Nov. 2012.
[10] H. Jia, C. C. Prawoto, B. Chi, Z. Wang and C. P. Yue, “A full Ka-band power amplifier with 32.9% PAE and 15.3-dBm power in 65-nm CMOS,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 9, pp. 2657-2668, Sep. 2018.
[11] C. Alexander and M. Sadiku, Fundamentals of Electric Circuits, 2nd. New York: McGraw-Hill, 2004.
[12] G. Jin, N. Yan, Y. Lin, and H. Xu, “A linear CMOS power amplifier with efficiency-optimized transformer matching,” IEEE Microwave and Wireless Components Letters, vol. 32, no. 9, pp. 1059-1062, Sep. 2022.
[13] MediaTek-6G-Vision-White-Paper-EN0122
[14] 3GPP TR 38.820 V16.1.0 (2021-03)
[15] T. Yao, M. Q. Gordon, K. K. W. Tang, K. H. K. Yau, M. T. Yang, P. Schvan and S. P. Voinigescu, “Algorithmic design of CMOS LNAs and PAs for 60-GHz radio,” IEEE Journal of Solid-State Circuits, vol. 42, no. 5, pp. 1044-1057, May 2007.
[16] F. Wang and H. Wang, “A broadband linear ultra-compact mm-wave power amplifier with distributed-balun output network: analysis and design,” IEEE Journal of Solid-State Circuits, vol. 56, no. 8, pp. 2308-2323, Aug. 2021.
[17] 謝宜樺,「MOS 場效電晶體之溫度效應探討:基於 180-nm CMOS 製程電路模擬」,國立勤益科技大學,碩士論文,民國104年
[18] K. Choi, M. Kim, H. C. Kim, H. Cho, J. Cho, S. Yoo, K. Yang, S. Jung, S. Ryu, and Y. Yang, “CMOS up-conversion mixer with adaptive bias circuit for UHF RFID reader,” in IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Singapore, 2009, pp. 20-23
[19] V. Trinh, H. Nam and J. Park, “A 20.5-dBm X -band power amplifier with a 1.2-V supply in 65-nm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 29, no. 3, pp. 234-236, Mar. 2019.
[20] P.-C. Huang, K.-Y. Lin and H. Wang, “A 4 GHz - 17 GHz Darlington cascode broadband medium power amplifier in 0.18- um CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 1, pp. 43-45, Jan. 2010.
[21] J. Ko and S. Nam, “A two-stage S-/X-band CMOS power amplifier for high-resolution radar transceivers,” IEEE Microwave and Wireless Components Letters, vol. 28, no. 7, pp. 606-608, Jul. 2018.
[22] A. V. Vasylyev, P. Weger, W. Bakalski and W. Simbuerger, “17-GHz 50–60 mW power amplifiers in 0.13-um standard CMOS,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 1, pp. 37-39, Jan. 2006.
[23] Y. Wang, B. Liu, R. Wu, H. Liu, A. T. Narayanan, J. Pang, N. Li, T. Yoshioka, Y. Terashima, H. Zhang, D. Tang, M. Katsuragi, D. Lee, S. Choi, K.Okada and A. Matsuzawa, “A 60-GHz 3.0-Gb/s spectrum efficient BPOOK transceiver for low-power short-range wireless in 65-nm CMOS,”IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1363-1374, May 2019.
[24] K. C. Mojjada, D. Kim and W. R. Eisenstadt, “A 6 pJ/bit transmitter front end in 130 nm CMOS technology for wireless interconnect,” in 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON), Cocoa Beach, FL, USA, 2015, pp. 1-3.
[25] J. Tao , N. Wang, E. J. Ng, Y. Zhu, and C. H. Heng, “A 5-pJ/bit OOK transmitter using MEMS-Based RF oscillator for IoT application in 180-nm CMOS,”IEEE Microwave and Wireless Components Letters, vol. 31, no. 10, pp.1158-1161, Oct. 2021
[26] C. C. Lin, H. Hu and S. Gupta, “ Spur minimization techniques for ultra-low-power injection-locked transmitters,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 67, no. 11, pp. 3643-3655, Nov. 2020.
[27] X. Yu, S. P. Sah, H. Rashtian, S. Mirabbasi, P. P. Pande, and D. Heo, “ A 1.2-pJ/bit 16-Gb/s 60-GHz OOK transmitter in 65-nm CMOS for wireless network-on-chip,” IEEE Transactions on Microwave Theory and Techniques, vol. 62, no. 10, pp. 2357-2369, Oct. 2014.
[28] P. Zhang, F. M. J. Willems, and L. Huang, “ Investigations of noncoherent OOK based schemes with soft and hard decisions for WSNs,” in 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2011, pp. 1702-1709.
[29] S. Deb et al., “ Design of an energy-efficient CMOS-compatible NoC architecture with millimeter-wave wireless interconnects,” IEEE Transactions on Computers, vol. 62, no. 12, pp. 2382-2396, Dec. 2013.
[30] 黃禮賢,「互補式金氧半導體Ku頻段寬頻功率放大器與K頻段開關鍵控發射機暨X頻段氮化鎵瓦特級功率放大器之研製」,國立中央大學,碩士論文,民國108年。
[31] M. Uzunkol and G. M. Rebeiz, “A low-loss 50 70 GHz SPDT switch in 90 nm CMOS,” IEEE Journal of Solid-State Circuits, vol. 45, pp. 2003-2007, Oct. 2010.
[32] Y. Um and C. Nguyen, “High-isolation multimode multifunction 24-/60-GHz CMOS dual-bandpass filtering T/R Switch,” IEEE Microwave and Wireless Components Letters, vol. 28, no. 8, pp. 696-698, Aug. 2018
[33] P. Huang, K. Lin, and H. Wang, “A 4–17 GHz darlington cascode broadband medium power amplifier in 0.18-μm CMOS technology,” IEEE Microwave and Wireless Components Letters, vol. 20, no. 1, pp. 43-45, Jan. 2010.
[34] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 179-194, Feb. 1998.
[35] K. Kwok and H. C. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, pp.652-660, Mar. 2005.
[36] R. Hartley, “Oscillation generator,” U.S.Patent1, pp.356-763,Oct.26,1920.
[37] K. C. Mojjada, D. Kim and W. R. Eisenstadt, “A 6 pJ/bit transmitter front end in 130 nm CMOS technology for wireless interconnect,” in IEEE 16th Annual. Wireless Microw. Technol. Conf. (WAMICON), Apr. 2015. pp. 1-3.
[38] S. Geng, D. Liu, Y. Li, H. Zhuo, W. Rhee and Z. Wang, “A 13.3 mW 500 Mb/s IR-UWB transceiver with link margin enhancement technique for meter-range communications,” IEEE Journal of Solid-State Circuits, vol. 50, no. 3, pp. 669-678, Mar. 2015.
[39] Y. Liu, H. Song, K. Zeng, W. Rhee, Z. Wong , “A 9mW 6-9GHz 2.5Gb/s proximity transmitter with combined OOK/BPSK modulation for low power mobile connectivity ,” in IEEE 2019 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), Hsinchu, Taiwan, 2019, pp.1-4.
[40] S. A. Mirbozorgi, H. Bahrami, M. Sawan, L. A. Rusch and B. Gosselin, “A single-chip full-duplex high speed transceiver for multi-site stimulating and recording neural implants,” IEEE Transactions on Biomedical Circuits and Systems, vol. 10, no. 3, pp. 643-653, Jun. 2016.
[41] S. C. Cripps, P. J. Tasker, A. L. Clarke, J. Lees and J. Benedikt, “On the continuity of high efficiency modes in linear RF power amplifiers,” IEEE Microwave and Wireless Components Letters, vol. 19, no. 10, pp. 665-667, Oct. 2009.
[42] P. Wright, J. Lees, J. Benedikt, P. J. Tasker, and S. C. Cripps, “A methodology for realizing high efficiency class-J in a linear and broadband PA,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 12, pp. 3196–3204, Dec. 2009.
[43] A. K. Kumaran, M. Pashaeifar, M. D’Avino, L. C. N. de Vreede and M. S. Alavi, “On-chip output stage design for a continuous class-F power amplifier,” in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5.
[44] N. Tuffy, L. Guan, A. Zhu and T. J. Brazil, “A simplified broadband design methodology for linearized high-efficiency continuous class-F power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 6, pp. 1952-1963, Jun. 2012.
[45] G. Nikandish, R. B. Staszewski and A. Zhu, “Design of highly linear broadband
continuous mode GaN MMIC power amplifiers for 5G,” IEEE Access, vol. 7, pp.
57138-57150, 2019.
[46] I. Ju and J. D. Cressler, “An X-band inverse class-F SiGe HBT cascode power amplifier with harmonic-tuned output transformer,” in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), Honolulu, HI, USA, 2017, pp. 390-393.
[47] D. J. Niven, S. J. Mahon, M. C. Heimlich , “ X-Band GaN Stacked-FET Power Amplifier,” in 2023 IEEE 5th Australian Microwave Symposium, Melbourne, Australia, Feb. 2023. pp. 19-20.
[48] T. Senju, K. Takagi and H. Kimura , “ A 2 W 45 % PAE X-band GaN HEMT class-F MMIC power amplifier,” in 2018 IEEE Asia-Pacific Microwave Conference (APMC), 2018. pp. 956-958.
[49] C. Liu, Q. Li, Y. Li, X. Li, H. Liu and Y. Z. Xiong, “An 890 mW stacked power amplifier using SiGe HBTs for X-band multifunctional chips,” in IEEE ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC), Graz, Austria, Sep. 2015, pp. 68-71. |