參考文獻 |
[1] T. Kawahara, K. Ito, R. Takemura, and H. Ohno, “Spin-transfer torque RAM technology: Review and prospect,” Journal of Microelectronics Reliability, vol. 52, no. 4, pp. 613–627, 2012.
[2] X. Fong, Y. Kim, R. Venkatesan, S. H. Choday, A. Raghunathan, and K. Roy, “Spin-transfer torque memories: Devices, circuits, and systems,” Proceedings of the IEEE, vol. 104, no. 7, pp. 1449–1488, 2016.
[3] Z. Wang, W. Zhao, E. Deng, J.-O. Klein, and C. Chappert, “Perpendicular-anisotropy magnetic tunnel junction switched by spin-hall-assisted spin-transfer torque,” Journal of Physics D: Applied Physics, vol. 48, no. 6, pp. 1–7, 2015.
[4] W.-J. Chen, Y.-J. Tsou, H.-C. Shih, P.-C. Liu, and C. W. Liu, “Critical current reduction of field-free perpendicular SOT-MTJ by STT assist using micromagnetic simulation,” in Proceedings of International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), 2021, pp. 159–162.
[5] T.-L. Tsai, J.-F. Li, C.-L. Hsu, and C.-T. Sun, “Testing of in-memory-computing 8T SRAMs,” in Proceedings of IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2019, pp. 1–4.
[6] J.-F. Li, “Testing of computing memories: Faults, test algorithms, and design-for-testability,” in Proceedings of IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2023, pp. 1–6.
[7] L. Wu, S. Rao, M. Taouil, G. C. Medeiros, M. Fieback, E. J. Marinissen, G. S. Kar, and S. Hamdioui, “Defect and fault modeling framework for STT-MRAM testing,” IEEE Transactions on Emerging Topics in Computing, vol. 9, no. 2, pp. 707–723, 2021.
[8] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with spin-transfer torque magnetic RAM,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 3, pp. 470–483, 2018.
[9] S. M. Nair, R. Bishnoi, M. B. Tahoori, G. Tshagharyan, H. Grigoryan, G. Harutyunyan, and Y. Zorian, “Defect injection, fault modeling and test algorithm generation methodology for STT-MRAM,” in Proceedings of IEEE International Test Conference (ITC), 2018, pp. 1–10.
[10] S. M. Nair, R. Bishnoi, A. Vijayan, and M. B. Tahoori, “Dynamic faults based hardware trojan design in STT-MRAM,” in Proceedings of Design, Automation Test in Europe Conference Exhibition (DATE), 2020, pp. 933–938.
[11] H.-C. Chen, J.-F. Li, C.-L. Hsu, and C.-T. Sun, “Configurable 8t SRAM for enbling in-memory computing,” in Proceedings of International Conference on Communication Engineering and Technology (ICCET), 2019, pp. 139–142.
[12] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-SRAM: Enabling in-memory boolean computations in CMOS static random access memories,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65, no. 12, pp. 4219–4232, 2018.
[13] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory accelerator for bulk bitwise operations using commodity DRAM technology,” in Proceedings of Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2017, pp. 273–287.
[14] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C. Weiser, “MAGIC—memristor-aided logic,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11, pp. 895–899, 2014.
[15] L. Xie, H. Du Nguyen, J. Yu, A. Kaichouhi, M. Taouil, M. AlFailakawi, and S. Ham- dioui, “Scouting logic: A novel memristor-based logic design for resistive computing,” in Proceedings of IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2017, pp. 176–181.
[16] M. Zabihi, A. K. Sharma, M. G. Mankalale, Z. I. Chowdhury, Z. Zhao, S. Resch, U. R. Karpuzcu, J.-P. Wang, and S. S. Sapatnekar, “Analyzing the effects of interconnect parasitics in the STT CRAM in-memory computational platform,” IEEE Journal on Exploratory Solid-State Computational Devices and Circuits, vol. 6, no. 1, pp. 71-79, 2020.
[17] Z. He, S. Angizi, and D. Fan, “Exploring STT-MRAM based in-memory computing paradigm with application of image edge extraction,” in Proceedings of IEEE International Conference on Computer Design (ICCD), 2017, pp. 439–446.
[18] S. Jung, H. Lee, S. Myung, H. Kim, S. K. Yoon, S.-W. Kwon et al., “A crossbar array of magnetoresistive memory devices for in-memory computing,” Journal of Nature, vol. 601, no. 7892, pp. 211–216, 2022.
[19] D. Fan and S. Angizi, “Energy efficient in-memory binary deep neural network accelerator with dual-mode SOT-MRAM,” in Proceedings of IEEE International Conference on Computer Design (ICCD), 2017, pp. 609–612.
[20] Z. He, S. Angizi, F. Parveen, and D. Fan, “High performance and energy-efficient in-memory computing architecture based on SOT-MRAM,” in Proceedings of IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), 2017, pp. 97–102.
[21] T. Kim, Y. Jang, M.-G. Kang, B.-G. Park, K.-J. Lee, and J. Park, “SOT-MRAM digital PIM architecture with extended parallelism in matrix multiplication,” IEEE Transactions on Computers, vol. 71, no. 11, pp. 2816–2828, 2022.
[22] Z. Guo, J. Yin, Y. Bai, D. Zhu, K. Shi, G. Wang, K. Cao, and W. Zhao, “Spintronics for energy-efficient computing: An overview and outlook,” Proceedings of the IEEE, vol. 109, no. 8, pp. 1398–1417, 2021.
[23] A. V. Khvalkovskiy, D. Apalkov, S. Watts, R. Chepulskii, R. Beach, A. Ong et al., “Basic principles of STT-MRAM cell operation in memory arrays,” Journal of Physics D: Applied Physics, vol. 46, no. 7, pp. 1–22, 2013.
[24] Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu, K. Wang, F. Freimuth, Y. Mokrousov, M. D. Stiles, S. Emori, A. Hoffmann, J. A? kerman, K. Roy, J.-P. Wang, S.-H. Yang, K. Garello, and W. Zhang, “Roadmap of spin–srbit torques,” IEEE Transactions on Magnetics, vol. 57, no. 7, pp. 1–39, 2021.
[25] Y. Zhang, X. Wang, Y. Li, A. Jones, and Y. Chen, “Asymmetry of MTJ switching and its implication to STT-RAM designs,” in Proceedings of Design, Automation Test in Europe Conference Exhibition (DATE), 2012, pp. 1313–1318.
[26] L. Wu, M. Taouil, S. Rao, E. J. Marinissen, and S. Hamdioui, “Survey on STT-MRAM testing: Failure mechanisms, fault models, and tests,” ArXiv, vol. abs/2001.05463, 2020.
[27] M. Dyakonov and V. Perel, “Current-induced spin orientation of electrons in semiconductors,” Journal of Physics Letters A, vol. 35, no. 6, pp. 459–460, 1971.
[28] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and T. Jungwirth, “Spin hall effects,” Journal of Rev. Mod. Phys., vol. 87, pp. 1213–1260, 2015.
[29] V. Edelstein, “Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems,” Journal of Solid State Communications, vol. 73, no. 3, pp. 233–235, 1990.
[30] A. Chintaluri, H. Naeimi, S. Natarajan, and A. Raychowdhury, “Analysis of defects and variations in embedded spin transfer torque (STT) MRAM arrays,” IEEE Journal on Emerging and Selected Topics in Circuits and Systems, vol. 6, no. 3, pp. 319–329, 2016.
[31] S. M. Nair, C. Mu‥nch, and M. B. Tahoori, “Defect characterization and test generation for spintronic-based compute-in-memory,” in Proceedings of IEEE European Test Symposium (ETS), 2020, pp. 1–6.
[32] J. Kim, A. Chen, B. Behin-Aein, S. Kumar, J.-P. Wang, and C. H. Kim, “A technology-agnostic MTJ SPICE model with user-defined dimensions for STT-MRAM scalability studies,” in Proceedings of IEEE Custom Integrated Circuits Conference (CICC), 2015, pp. 1–4.
[33] K. Monga, L. Maheshwari, N. Chaturvedi, and S. Gurunarayanan, “Twin-coupled sense amplifier to improve margin in 1T-1MTJ based MRAM array,” in Proceedings of International Symposium on VLSI Design and Test (VDAT), 2020, pp. 1–4.
[34] R. Bishnoi, M. Ebrahimi, F. Oboril, and M. B. Tahoori, “Read disturb fault detection in STT-MRAM,” in Proceedings of International Test Conference, 2014, pp. 1–7.
[35] Y.-X. Chen and J.-F. Li, “Fault modeling and testing of 1T1R memristor memories,” in Proceedings of IEEE VLSI Test Symposium (VTS), 2015, pp. 1–6.
[36] Y. C. Yang and J.-F. Li, “Fault modeling and testing of RRAM-based computing-in memories,” in Proceedings of IEEE International Test Conference in Asia (ITC-Asia), 2022,
pp. 7–12. |