博碩士論文 106581606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:4 、訪客IP:3.141.244.88
姓名 穆沙法(Muzafar Ahmad Rather)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 氮化硼介導III族氮化物和 B(Al,Ga)N 異質結構的磊晶成長
(Boron Nitride Mediated Growth of III-Nitrides and B(Al, Ga)N Heterojunctions)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-1-22以後開放)
摘要(中) III族氮化物材料,包括氮化鎵(GaN)、氮化鋁(AlN)、氮化銦(InN)及其合金,已經徹底革新了現代化合物半導體技術,推動了光電和高功率電子設備的突破性發展。基於GaN的LED和雷射構成了固態照明和光學技術的基礎,而GaN高電子遷移率電晶體(HEMT)在電信和電力電子領域中發揮了重要作用,以其卓越的效率和性能備受青睞。然而,儘管具有巨大潛力,III族氮化物材料的磊晶生長仍面臨顯著挑戰,尤其是由於缺乏原生基板。傳統的磊晶方法通常依賴藍寶石、矽(Si)或碳化矽(SiC)等異質基板,而這些基板與III族氮化物存在晶格和熱膨脹係數失配,從而引入應變和缺陷。
III族氮化物材料的磊晶生長技術中,有機金屬化學蒸氣沉積(MOCVD)技術因其具可擴展性、材料組合彈性以及成長參數的精確控制而成為關鍵的製造技術。本論文首先研究了二維材料氮化硼(sp2-BN)的有機金屬化學蒸氣沉積晶圓級藍寶石和矽基板上成長,通過多種實驗技術對所成長的氮化硼材料進行了全面的分析。研究發現,在藍寶石表面形成鋁氧氮化物(AlNxOy)層是生長二維BN材料的必要步驟,而在矽基板上,以脈衝流模式成長能夠有效促進二維BN的成長,儘管其晶格失配高達約34%。
隨後,我們探討了二維BN作為III族氮化物生長中介層的作用。此方法面臨著III族氮化物成核和自剝離的挑戰,這主要源於二維BN的表面無懸鍵可以和外來原子鍵結。我們克服了這些挑戰,並提出了一個自剝離機制模型,其中界面結合能是控制自剝離過程的關鍵。我們成功地展示了使用較薄的二維BN中介層實現材料品質改進和可控的磊晶剝離(ELO)情形,並且得以保持剝離後之多量子井結構的發光性能,無任何退化狀況。
本研究進一步探討了二維BN作為中介層在熱性能優越的多晶氮化鋁(poly-AlN)基板上生長III族氮化物的可行性和潛力。並以結構和光學分析方法,包括X射線繞射(XRD)、電子背向散射繞射(EBSD)和光激發光光譜,證實了使用BN中介層的poly-AlN模板上可以實現了III族氮化物的單晶生長。密度泛函理論(DFT)計算結果顯示,實現poly-AlN基板上磊晶III族氮化物需要優化h-BN層的厚度,以抑制來自多晶基板的遠程相互作用。
此外,本研究還聚焦於硼基sp3相III族氮化物合金的磊晶成長與特性分析。通過在III族氮化物中引入硼,可形成三元和四元B(Al, Ga, In)合金,為III族氮化物提供更大的帶隙調節能力和晶格匹配選項。本研究有系統地研究了成長參數對B(Al, Ga)N合金結構特性的影響,成功地實現了0%-6%硼含量的三元BGaN合金和0%-13%硼含量的BAlN合金。進一步研究了B(Al, Ga)N與傳統III族氮化物材料的異質結帶隙對齊情況。結果顯示,B(Al, Ga)N異質接面可以實現第I型和第II型帶隙對齊,我們也以p-d軌道耦合理論闡述其價帶偏移VBO的趨勢 。
總體而言,本研究探討了sp2相BN在實現矽基板上的III族氮化物凡德瓦磊晶。此外,還研究了Wurtzite 相B(Al, Ga)N合金,以拓展III族氮化物材料的功能範圍及其元件應用潛力。
摘要(英) III-nitride materials, including gallium nitride (GaN), aluminum nitride (AlN), indium nitride (InN), and their alloys, have revolutionized modern compound semiconductor technology, driving breakthroughs in optoelectronics and high-power electronic devices. GaN-based LEDs and lasers form the foundation of solid-state lighting and optical technologies, while GaN high-electron-mobility transistors (HEMTs) play a crucial role in telecommunications and power electronics, offering exceptional efficiency and performance. Despite their potential, the growth of III-nitride materials presents significant challenges, particularly due to the lack of native substrates. Conventional epitaxy methods often rely on heteroepitaxy on substrates such as sapphire, silicon (Si), or silicon carbide (SiC), all of which exhibit lattice and thermal mismatches with III-nitride materials, introducing strain and defects. Conventional approaches, such as low-temperature nucleation layers, graded buffer layers, and superlattice structures, have achieved partial success but remain limited in their ability to produce strain and defect-free, scalable III-nitride layers. These limitations have motivated the exploration of alternative growth approach, mediated by two-dimensional (2D) materials by leveraging the weak interlayer bonding of 2D materials.
A key manufacturing process for growth of these III-nitride materials remained the metal-organic chemical vapor deposition (MOCVD), as of its scalable growth, integration of various materials and accurate control over the growth parameters. This thesis first explores the wafer-scale growth of 2D material boron nitride (sp2-BN), itself a potential candidate in III-nitride materials on cost-effective sapphire and silicon substrates utilizing the advantageous MOCVD approach. A comprehensive characterization of the grown BN material was undertaken using various experimental techniques. A formation of an aluminium oxynitride (AlNxOy) layer on the surface of sapphire is found to be a necessary step for the growth of 2D BN material on sapphire, whereas, for Si substrates, the pulsed-flow mode MOCVD growth method effectively facilitates the growth of 2D BN on Si, despite the substantial lattice mismatch of ~34%.
Subsequently, 2D-BN′s role as a mediator for III-nitride growth is explored. This growth method presents challenges such as nucleation and self-delamination of III-nitrides, arising from 2D-BN’s dangling bond-free surface and weak interface bonding. These challenges are addressed, and a model for the self-exfoliation mechanism is proposed, where the interface binding energy plays a role in controlling the self-exfoliation process. Structural improvements and controlled epitaxial lift-off (ELO) were successfully demonstrated with thinner h-BN layers, enabling the realization of multiple quantum-well structures that retained their emission properties post-ELO without degradation.
This study further highlights the feasibility and potential of 2D-BN as a mediator for the growth of III-nitrides on thermally superior polycrystalline aluminum nitride (poly-AlN) substrates. Structural and optical analyses, including X-ray diffraction (XRD), electron backscatter diffraction (EBSD), and photoluminescence spectroscopy, confirm the successful single-crystalline growth of III-nitrides on BN-mediated poly-AlN templates. Density functional theory (DFT) calculations indicate that achieving crystalline III-nitride growth on poly-AlN substrates requires an optimized h-BN layer sufficiently thick to suppress remote interactions from the polycrystalline substrate.
Another focus of this study is the growth and characterization of boron-based sp3-phase III-nitride alloys. Incorporating boron into III-nitrides enables the formation of ternary and quaternary B(Al, Ga, In) alloys, offering more bandgap tunability and lattice-matching options in III-nitrides. This study systematically investigates the growth parameters and their impact on the structural properties of B(Al, Ga)N alloys. Ternary BGaN alloys with 0%–6% boron composition and BAlN alloys with 0%–13% boron compositions are realized. The band alignment studies of B(Al, Ga)N heterojunctions with conventional III-nitride materials are further investigated. Both type-I and type-II band alignments are possible with B(Al, Ga)N heterojunctions, and the valence band offset (VBO) of these heterojunctions is compared and discussed in the context of p–d orbital coupling.
Overall, this work investigates the applicability of the sp2 phase BN in enabling the van der Waals growth of III-nitrides, particularly on Si substrates. Additionally, it explores the sp3 phase of B(Al, Ga)N alloys to expand the functional scope of III-nitride materials alongside with boron.
關鍵字(中) ★ III族氮化物材料
★ 二維材料
★ 氮化硼
★ 磊晶剝離
★ 凡德瓦磊晶
關鍵字(英) ★ III-nitrides
★ 2D materials
★ Boron nitride
★ Epitaxial lift-off
★ Van der Waals epitaxy
論文目次 Abstract i
摘要 iv
Acknowledgements vi
List of Figures x
List of Tables xii
1. Introduction 1
1.1 Boron Nitride Mediated Growth of III-Nitrides 1
1.2 Emerging Role of B(Al, Ga, In)N Alloys 4
1.3 Thesis Structure 5
2. Review of BN and Boron Based III-V Alloys 7
2.1 BN: Crystalline Structures and Basic properties 8
2.1.1 Thermodynamic Stability of BN Crystalline Structures 12
2.1.2 Applications 15
2.2 Boron Based III-V Alloys 17
2.2.1 B(Al, Ga, In) Alloys and Stability 17
2.2.2 B(Al, Ga, In) Spontaneous and Piezoelectric Polarization 20
2.3 Summary 23
3. MOCVD Growth and Characterization of Boron Nitride 25
3.1 MOCVD Growth Overview 25
3.1.1 Three Distinct Growth Regimes in MOCVD 27
3.1.2 Continuous Flow Mode Growth Method 30
3.1.3 Pulsed Flow Mode Growth Method 30
3.2 BN Growth on Sapphire 31
3.2.1 Impact of Nitridation 32
3.2.2 Impact of V/III Ratio 35
3.2.3 Alternative Pulsed Flow Mode Growth 39
3.3 BN Growth on Si 42
3.3.1 Challenges of BN Growth on Si 43
3.3.2 Growth Strategies 44
3.4 Summary 49
4. Boron Nitride Mediated Growth of III-Nitrides 51
4.1 BN Mediated III-Nitrides on Sapphire 51
4.1.1 Nucleation 51
4.1.2 Growth, Delamination and Characterization of III-Nitrides 53
4.2 BN Mediated III-Nitrides on Si 57
4.2.1 Nucleation 57
4.2.2 Growth and Characterization of III-Nitrides 59
4.2.3 Self-Exfoliation and Interface Binding Energy 64
4.2.4 MQW Growth and Epitaxial Lift-off 70
4.3 Summary 72
5. BN Mediated Growth of III-Nitrides on Unconventional Poly-AlN Substrate 74
5.1 Introduction: III-Nitrides on Unconventional Substrates 74
5.2 BN Mediated Growth of III-Nitrides on Poly-AlN 75
5.2.1 BN Transfer on Poly-AlN and Growth of III-Nitrides 77
5.2.2 MQW on Poly-AlN 83
5.2.3 DFT Calculations and Growth Mechanism 84
5.3 Summary 87
6. B(Al, Ga)N Alloys and Heterojunctions 88
6.1 BGaN MOCVD Growth 88
6.1.1 Impact of Growth Temperature 88
6.1.2 Impact of Boron Gas Phase percentage 91
6.1.3 Impact of Growth Pressure 92
6.2 BAlN MOCVD Growth 93
6.2.1 Impact of Growth Temperature 94
6.2.2 Impact of Boron Gas Phase Percentage 95
6.3 Bandgap Energy of B(Al, Ga)N Alloys 96
6.4 Band Alignments of B(Al, Ga)N Heterojunctions 98
6.5 Summary 106
7. Conclusions and Perspectives 108
7.1 Conclusions 108
7.2 Future Perspectives 112
References 115
List of Publications and Conferences 121
參考文獻 1. L. Liu and J. H. Edgar, Materials Science and Engineering: R: Reports 37 (3), 61-127 (2002).
2. T. Ueda, M. Ishida and M. Yuri, Japanese Journal of Applied Physics 50 (4R), 041001 (2011).
3. C.-F. Chu, F.-I. Lai, J.-T. Chu, C.-C. Yu, C.-F. Lin, H.-C. Kuo and S. Wang, Journal of Applied Physics 95 (8), 3916-3922 (2004).
4. J. Park, K. M. Song, S.-R. Jeon, J. H. Baek and S.-W. Ryu, Applied physics letters 94 (22) (2009).
5. I. Roh, S. H. Goh, Y. Meng, J. S. Kim, S. Han, Z. Xu, H. E. Lee, Y. Kim and S.-H. Bae, Nano Convergence 10 (1), 20 (2023).
6. H. Ryu, H. Park, J.-H. Kim, F. Ren, J. Kim, G.-H. Lee and S. J. Pearton, Applied Physics Reviews 9 (3) (2022).
7. J. Yu, L. Wang, Z. Hao, Y. Luo, C. Sun, J. Wang, Y. Han, B. Xiong and H. Li, Advanced Materials 32 (15), 1903407 (2020).
8. H. Sevincli, M. Topsakal, E. Durgun and S. Ciraci, Physical Review B—Condensed Matter and Materials Physics 77 (19), 195434 (2008).
9. M. Sun, W. Tang, Q. Ren, S. Wang, Y. Du and Y. Zhang, Applied Surface Science 356, 668-673 (2015).
10. Y. Kobayashi, K. Kumakura, T. Akasaka and T. Makimoto, Nature 484 (7393), 223-227 (2012).
11. M. J. Motala, E. W. Blanton, A. Hilton, E. Heller, C. Muratore, K. Burzynski, J. L. Brown, K. Chabak, M. Durstock and M. Snure, ACS applied materials & interfaces 12 (19), 21837-21844 (2020).
12. J. Kim, C. Bayram, H. Park, C. W. Cheng, C. Dimitrakopoulos, J. A. Ott, K. B. Reuter, S. W. Bedell and D. K. Sadana, Nature Communications 5 (2014).
13. T. Ayari, S. Sundaram, X. Li, Y. El Gmili, P. L. Voss, J. P. Salvestrini and A. Ougazzaden, Applied Physics Letters 108 (17), 171106 (2016).
14. T. Ayari, C. Bishop, M. B. Jordan, S. Sundaram, X. Li, S. Alam, Y. ElGmili, G. Patriarche, P. L. Voss and J. P. Salvestrini, Scientific reports 7 (1), 1-8 (2017).
15. M. Hiroki, K. Kumakura, Y. Kobayashi, T. Akasaka, T. Makimoto and H. Yamamoto, Applied Physics Letters 105 (19), 193509 (2014).
16. S.-K. Chiu, M.-C. Li, J.-W. Ci, Y.-C. Hung, D.-S. Tsai, C.-H. Chen, L.-H. Lin, K. Watanabe, T. Taniguchi and N. Aoki, Nanotechnology 34 (25), 255703 (2023).
17. Y. Yu, P. W. Fong, S. Wang and C. Surya, Scientific reports 6 (1), 37833 (2016).
18. Y. Kubota, K. Watanabe, O. Tsuda and T. Taniguchi, Science 317 (5840), 932-934 (2007).
19. R. Dahal, J. Li, S. Majety, B. N. Pantha, X. Cao, J. Lin and H. Jiang, Applied physics letters 98 (21), 211110 (2011).
20. S. Majety, X. Cao, R. Dahal, B. Pantha, J. Li, J. Lin and H. Jiang, presented at the Quantum Sensing and Nanophotonic Devices IX, 2012 (unpublished).
21. X. Li, S. Sundaram, Y. El Gmili, T. Ayari, R. Puybaret, G. Patriarche, P. L. Voss, J. P. Salvestrini and A. Ougazzaden, Cryst Growth Des 16 (6), 3409-3415 (2016).
22. X. Yang, S. Nitta, K. Nagamatsu, S.-Y. Bae, H.-J. Lee, Y. Liu, M. Pristovsek, Y. Honda and H. Amano, Journal of Crystal Growth 482, 1-8 (2018).
23. M. Chubarov, H. Pedersen, H. Hogberg, V. Darakchieva, J. Jensen, P. O. A. Persson and A. Henry, physica status solidi (RRL) – Rapid Research Letters 5 (10-11), 397-399 (2011).
24. X. Yang, S. Nitta, M. Pristovsek, Y. Liu, K. Nagamatsu, M. Kushimoto, Y. Honda and H. Amano, Appl Phys Express 11, 051002 (2018).
25. J. H. Boo, C. Rohr and W. Ho, physica status solidi (a) 176 (1), 705-710 (1999).
26. K. Ahmed, R. Dahal, A. Weltz, J.-Q. Lu, Y. Danon and I. Bhat, Applied physics letters 109 (11) (2016).
27. S. Behura, P. Nguyen, R. Debbarma, S. Che, M. R. Seacrist and V. Berry, ACS nano 11 (5), 4985-4994 (2017).
28. J. Kim, K.-Y. Doh, S. Moon, C.-W. Choi, H. Jeong, J. Kim, W. Yoo, K. Park, K. Chong and C. Chung, Chemistry of Materials 35 (6), 2429-2438 (2023).
29. X. Chen, C. Tan, X. Liu, K. Luan, Y. Guan, X. Liu, J. Zhao, L. Hou, Y. Gao and Z. Chen, Journal of Materials Science: Materials in Electronics 32, 3713-3719 (2021).
30. L. Souqui, H. Pedersen and H. Hogberg, Journal of Vacuum Science & Technology A 38 (4) (2020).
31. L. Williams and E. Kioupakis, Applied Physics Letters 115 (23), 231103 (2019).
32. R. Kudrawiec and D. Hommel, Applied Physics Reviews 7 (4), 041314 (2020).
33. A. A. Sulami, F. Alqatari and X. Li, arXiv preprint arXiv:2005.08407 (2020).
34. J.-X. Shen, M. E. Turiansky, D. Wickramaratne and C. G. Van de Walle, Physical Review Materials 5 (3), L030401 (2021).
35. Y. Hasegawa, T. Akiyama, A.-M. Pradipto, K. Nakamura and T. Ito, physica status solidi (b) 257 (8), 2000205 (2020).
36. L. Lymperakis, AIP Advances 8 (6), 065301 (2018).
37. X. Li, S. Wang, H. Liu, F. A. Ponce, T. Detchprohm and R. D. Dupuis, physica status solidi (b) 254 (8), 1600699 (2017).
38. P. Vuong, A. Mballo, S. Sundaram, G. Patriarche, Y. Halfaya, S. Karrakchou, A. Srivastava, K. Krishnan, N. Y. Sama, T. Ayari, S. Gautier, P. L. Voss, J. P. Salvestrini and A. Ougazzaden, Applied Physics Letters 116 (4), 042101 (2020).
39. A. Kadys, J. Mickevi?ius, T. Malinauskas, J. Jurkevi?ius, M. Kolenda, S. Stanionyt?, D. Dobrovolskas and G. Tamulaitis, Journal of Physics D: Applied Physics 48 (46), 465307 (2015).
40. T.-C. Han, H.-D. Zhao and X.-C. Peng, Chinese Physics B 28 (4), 047302 (2019).
41. T. Han, H. Zhao and X. Peng, Superlattices and Microstructures 126, 57-62 (2019).
42. J. R. Dickerson, V. Ravindran, T. Moudakir, S. Gautier, P. L. Voss and A. Ougazzaden, The European Physical Journal Applied Physics 60 (3), 30101 (2012).
43. V. Ravindran, M. Boucherit, A. Soltani, S. Gautier, T. Moudakir, J. Dickerson, P. L. Voss, M.-A. di Forte-Poisson, J.-C. De Jaeger and A. Ougazzaden, Applied Physics Letters 100 (24), 243503 (2012).
44. K. Greenman, L. Williams and E. Kioupakis, Journal of Applied Physics 126 (5), 055702 (2019).
45. A. Belaid and A. Hamdoune, Journal of Semiconductors 40 (3), 032802 (2019).
46. S. Park, W. Hong, J. Kim, B. Kim and D. Ahn, presented at the 2017 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 2017 (unpublished).
47. W. Gu, Y. Lu, R. Lin, W. Guo, Z. Zhang, J.-H. Ryou, J. Yan, J. Wang, J. Li and X. Li, Journal of Physics D: Applied Physics 54 (17), 175104 (2021).
48. M. Abid, T. Moudakir, G. Orsal, S. Gautier, A. En Naciri, Z. Djebbour, J. H. Ryou, G. Patriarche, L. Largeau, H. J. Kim, Z. Lochner, K. Pantzas, D. Alamarguy, F. Jomard, R. D. Dupuis, J. P. Salvestrini, P. L. Voss and A. Ougazzaden, Applied Physics Letters 100 (5), 051101 (2012).
49. H. Sun, Y. J. Park, K.-H. Li, C. Torres Castanedo, A. Alowayed, T. Detchprohm, R. D. Dupuis and X. Li, Applied Physics Letters 111 (12), 122106 (2017).
50. K. Liu, H. Sun, F. AlQatari, W. Guo, X. Liu, J. Li, C. G. Torres Castanedo and X. Li, Applied Physics Letters 111 (22), 222106 (2017).
51. W. H. Balmain, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 21 (138), 270-277 (1842).
52. N. Miyata, K. Moriki, O. Mishima, M. Fujisawa and T. Hattori, Physical Review B 40 (17), 12028-12029 (1989).
53. D. A. Evans, A. G. McGlynn, B. M. Towlson, M. Gunn, D. Jones, T. E. Jenkins, R. Winter and N. R. J. Poolton, Journal of Physics: Condensed Matter 20 (7), 075233 (2008).
54. S.-P. Gao, Computational Materials Science 61, 266-269 (2012).
55. L. Xu, J. Zhan, J. Hu, Y. Bando, X. Yuan, T. Sekiguchi, M. Mitome and D. Golberg, ChemInform 38 (43), no-no (2007).
56. G. Cassabois, P. Valvin and B. Gil, Nature photonics 10 (4), 262-266 (2016).
57. F. P. Bundy and R. H. Wentorf, Jr., The Journal of Chemical Physics 38 (5), 1144-1149 (1963).
58. H. Pedersen, B. Alling, H. Hogberg and A. Ektarawong, Journal of Vacuum Science & Technology A 37 (4) (2019).
59. C. Cazorla and T. Gould, Sci Adv 5 (1), eaau5832 (2019).
60. Z. Liu, Y. Gong, W. Zhou, L. Ma, J. Yu, J. C. Idrobo, J. Jung, A. H. MacDonald, R. Vajtai and J. Lou, Nature communications 4 (1), 2541 (2013).
61. L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi and Y. Chen, ACS nano 8 (2), 1457-1462 (2014).
62. Y. Lin, C. E. Bunker, K. S. Fernando and J. W. Connell, ACS applied materials & interfaces 4 (2), 1110-1117 (2012).
63. D. Chugh, C. Jagadish and H. Tan, Adv Mater Technol-Us 4 (8), 1900220 (2019).
64. H. Kim, Y. Liu, K. Lu, C. S. Chang, D. Sung, M. Akl, K. Qiao, K. S. Kim, B.-I. Park and M. Zhu, Nature nanotechnology 18 (5), 464-470 (2023).
65. M. A. Yamoah, W. Yang, E. Pop and D. Goldhaber-Gordon, ACS nano 11 (10), 9914-9919 (2017).
66. S. Vangala, G. Siegel, T. Prusnick and M. Snure, Scientific reports 8 (1), 8842 (2018).
67. K. Watanabe and T. Taniguchi, International Journal of Applied Ceramic Technology 8 (5), 977-989 (2011).
68. A. Maity, S. J. Grenadier, J. Li, J. Y. Lin and H. X. Jiang, Applied Physics Letters 116 (14) (2020).
69. B. Singh, G. Kaur, P. Singh, K. Singh, B. Kumar, A. Vij, M. Kumar, R. Bala, R. Meena and A. Singh, Scientific Reports 6 (1), 1-10 (2016).
70. T. T. Tran, K. Bray, M. J. Ford, M. Toth and I. Aharonovich, Nature nanotechnology 11 (1), 37-41 (2016).
71. N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, C. A. Meriles and V. M. Menon, Optica 5 (9), 1128-1134 (2018).
72. L. Teles, L. Scolfaro, J. Leite, J. Furthmuller and F. Bechstedt, Applied physics letters 80 (7), 1177-1179 (2002).
73. C. E. Dreyer, J. L. Lyons, A. Janotti and C. G. Van de Walle, Appl Phys Express 7 (3), 031001 (2014).
74. F. A. Ponce, J. S. Major, Jr., W. E. Plano and D. F. Welch, Applied Physics Letters 65 (18), 2302-2304 (1994).
75. C. A. Castilla-Martinez, R. Mighri, C. Charmette, J. Cartier and U. B. Demirci, Energy Technology, 2201521 (2023).
76. L. Gao, W. Ren, H. Xu, L. Jin, Z. Wang, T. Ma, L.-P. Ma, Z. Zhang, Q. Fu and L.-M. Peng, Nature communications 3 (1), 699 (2012).
77. Z. Zhang, J. Yang, D. Zhao, B. Wang, Y. Zhang, F. Liang, P. Chen, Z. Liu and Y. Ben, AIP Advances 12 (9) (2022).
78. D. Chugh, J. Wong-Leung, L. Li, M. Lysevych, H. H. Tan and C. Jagadish, 2D Materials 5 (4), 045018 (2018).
79. X. Liu, S. Fan, X. Chen, J. Liu, J. Zhao, X. Liu, L. Hou, Y. Gao and Z. Chen, Applied Physics Letters 123 (20) (2023).
80. R. Trehan, Y. Lifshitz and J. Rabalais, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8 (6), 4026-4032 (1990).
81. G. Radtke, M. Couillard, G. Botton, D. Zhu and C. Humphreys, Applied Physics Letters 97 (25) (2010).
82. N. L. McDougall, R. J. Nicholls, J. G. Partridge and D. G. McCulloch, Microscopy and Microanalysis 20 (4), 1053-1059 (2014).
83. Z. Fan, G. Rong, N. Newman and D. J. Smith, Applied Physics Letters 76 (14), 1839-1841 (2000).
84. M. A. Reshchikov, Journal of Applied Physics 129 (12) (2021).
85. S. Wu, X. Yang, Z. Wang, Z. Ouyang, H. Huang, Q. Zhang, Q. Shang, Z. Shen, F. Xu and X. Wang, Applied Physics Letters 120 (24) (2022).
86. J. Shim, S.-H. Bae, W. Kong, D. Lee, K. Qiao, D. Nezich, Y. J. Park, R. Zhao, S. Sundaram and X. Li, Science 362 (6415), 665-670 (2018).
87. Y. Lee, H. H. Tan, C. Jagadish and S. K. Karuturi, ACS Applied Electronic Materials 3 (1), 145-162 (2020).
88. G. G. Stoney, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 82 (553), 172-175 (1909).
89. W. D. Nix, Metallurgical transactions A 20, 2217-2245 (1989).
90. J. Kim, D. Inns and D. K. Sadana, Journal of Applied Physics 107 (7) (2010).
91. J. A. Cuenca, M. D. Smith, D. E. Field, F. C. Massabuau, S. Mandal, J. Pomeroy, D. J. Wallis, R. A. Oliver, I. Thayne and M. Kuball, Carbon 174, 647-661 (2021).
92. J. Kim, H. Park, J. B. Hannon, S. W. Bedell, K. Fogel, D. K. Sadana and C. Dimitrakopoulos, Science 342 (6160), 833-836 (2013).
93. C. D. Spataru, M. H. Crawford and A. A. Allerman, Applied Physics Letters 114 (1) (2019).
94. M. Bokdam, G. Brocks, M. I. Katsnelson and P. J. Kelly, Physical Review B 90 (8), 085415 (2014).
95. I. Hamada and M. Otani, Physical Review B 82 (15), 153412 (2010).
96. C. Kisielowski, J. Kruger, S. Ruvimov, T. Suski, J. Ager III, E. Jones, Z. Liliental-Weber, M. Rubin, E. Weber and M. Bremser, Physical review B 54 (24), 17745 (1996).
97. L. Liu and J. H. Edgar, Mat Sci Eng R 37 (3), 61-127 (2002).
98. S. A. Kukushkin, A. V. Osipov, V. N. Bessolov, B. K. Medvedev, V. K. Nevolin and K. A. Tcarik, Rev Adv Mater Sci 17 (1-2), 1-32 (2008).
99. Y. H. Zhang, A. Dadgar and T. Palacios, J Phys D Appl Phys 51 (27) (2018).
100. T. Ayari, S. Sundaram, C. Bishop, A. Mballo, P. Vuong, Y. Halfaya, S. Karrakchou, S. Gautier, P. L. Voss, J. P. Salvestrini and A. Ougazzaden, Adv Mater Technol-Us 4 (10) (2019).
101. J. H. Choi, J. Kim, H. Yoo, J. Y. Liu, S. Kim, C. W. Baik, C. R. Cho, J. G. Kang, M. Kim, P. V. Braun, S. Hwang and T. S. Jung, Adv Opt Mater 4 (4), 505-521 (2016).
102. P. Prajapat, D. K. Singh and G. Gupta, Mater Sci Eng B-Adv 295 (2023).
103. S. J. Liu, Y. F. Li, Q. Liu, J. Y. Tao and X. H. Zheng, Journal of Vacuum Science & Technology A 41 (5) (2023).
104. K. Chung, S. I. Park, H. Baek, J. S. Chung and G. C. Yi, Npg Asia Mater 4 (2012).
105. J. W. Shon, J. Ohta, K. Ueno, A. Kobayashi and H. Fujioka, Scientific Reports 4 (2014).
106. J. D. Yu, Z. B. Hao, J. Deng, W. Y. Yu, L. Wang, Y. Luo, J. Wang, C. Z. Sun, Y. J. Han, B. Xiong and H. T. Li, Journal of Crystal Growth 547 (2020).
107. F. Ren, B. Y. Liu, Z. L. Chen, Y. Yin, J. Y. Sun, S. Zhang, B. Jiang, B. Z. Liu, Z. T. Liu, J. W. Wang, M. Liang, G. D. Yuan, J. C. Yan, T. B. Wei, X. Y. Yi, J. X. Wang, Y. Zhang, J. M. Li, P. Gao, Z. F. Liu and Z. Q. Liu, Sci Adv 7 (31) (2021).
108. J. D. Yu, Z. B. A. Hao, J. Deng, L. Wang, Y. Luo, J. Wang, C. Z. Sun, Y. J. Han, B. Xiong and H. T. Li, Cryst Growth Des 21 (7), 3831-3837 (2021).
109. K. Chung, H. Oh, J. Jo, K. Lee, M. Kim and G. C. Yi, Npg Asia Mater 9 (2017).
110. Y. X. Feng, X. L. Yang, Z. H. Zhang, D. Kong, J. Zhang, K. H. Liu, X. Z. Li, J. F. Shen, F. Liu, T. Wang, P. F. Ji, F. J. Xu, N. Tang, T. J. Yu, X. Q. Wang, D. P. Yu, W. K. Ge and B. Shen, Adv Funct Mater 29 (42) (2019).
111. T. Araki, S. Uchimura, J. Sakaguchi, Y. Nanishi, T. Fujishima, A. Hsu, K. K. Kim, T. Palacios, A. Pesquera, A. Centeno and A. Zurutuza, Appl Phys Express 7 (7) (2014).
112. W. F. Hsu, L. S. Lu, P. C. Kuo, J. H. Chen, W. C. Chueh, H. Yeh, H. L. Kao, J. S. Chen and W. H. Chang, Acs Applied Nano Materials 2 (4), 1964-1969 (2019).
113. A. Tanaka, W. Choi, R. J. Chen, R. Liu, W. M. Mook, K. L. Jungjohann, P. K. L. Yu and S. A. Dayeh, Journal of Applied Physics 125 (8) (2019).
114. W. Goncalez, M. Borga, K. Geens, D. Cingu, U. Chatterjee, S. Banerjee, A. Vohra, H. Han, A. Minj, H. Hahn, M. Marx, D. Fahle, B. Bakeroot and S. Decoutere, Scientific Reports 13 (1) (2023).
115. X. D. Li, K. Geens, D. Wellekens, M. Zhao, A. Magnani, N. Amirifar, B. Bakeroot, S. Z. You, D. Fahle, H. Hahn, M. Heuken, V. Odnoblyudov, O. Aktas, C. Basceri, D. Marcon, G. Groeseneken and S. Decoutere, Ieee T Semiconduct M 33 (4), 534-538 (2020).
116. J. S. Lundh, P. Waltereit, S. Muller, L. Kirste, H. Czap, M. J. Tadjer, K. D. Hobart, T. J. Anderson and V. Odnoblyudov, Phys Status Solidi A 220 (16) (2023).
117. P. Fay, D. Jena and P. Maki, in High-Frequency GaN Electronic Devices, edited by P. Fay, D. Jena and P. Maki (Springer International Publishing, Cham, 2020), pp. 1-3.
118. W. Kong, H. Li, K. Qiao, Y. Kim, K. Lee, Y. Nie, D. Lee, T. Osadchy, R. J. Molnar and D. K. Gaskill, Nat Mater 17 (11), 999-1004 (2018).
119. H. Kim, K. Y. Lu, Y. P. Liu, H. S. Kum, K. S. Kim, K. Qiao, S. H. Bae, S. Lee, Y. J. Ji, K. H. Kim, H. Paik, S. E. Xie, H. Shin, C. Choi, J. H. Lee, C. Y. Dong, J. A. Robinson, J. H. Lee, J. H. Ahn, G. Y. Yeom, D. G. Schlom and J. Kim, Acs Nano 15 (6), 10587-10596 (2021).
120. Y. P. Qu, Y. Xu, B. Cao, Y. N. Wang, J. F. Wang, L. Shi and K. Xu, Acs Applied Materials & Interfaces 14 (1), 2263-2274 (2022).
121. M. E. Turiansky, J.-X. Shen, D. Wickramaratne and C. G. Van de Walle, Journal of Applied Physics 126 (9), 095706 (2019).
122. J.-X. Shen, D. Wickramaratne and C. G. Van de Walle, Physical Review Materials 1 (6), 065001 (2017).
123. E. Kraut, R. Grant, J. Waldrop and S. Kowalczyk, Physical Review Letters 44 (24), 1620 (1980).
124. H. Sun, Y. J. Park, K.-H. Li, X. Liu, T. Detchprohm, X. Zhang, R. D. Dupuis and X. Li, Applied Surface Science 458, 949-953 (2018).
125. G. Martin, A. Botchkarev, A. Rockett and H. Morkoc, Applied Physics Letters 68 (18), 2541-2543 (1996).
126. P. King, T. Veal, C. Kendrick, L. Bailey, S. Durbin and C. McConville, Physical Review B 78 (3), 033308 (2008).
127. P. King, T. Veal, P. Jefferson, C. McConville, T. Wang, P. Parbrook, H. Lu and W. Schaff, Applied physics letters 90 (13), 132105 (2007).
128. G. Martin, S. Strite, A. Botchkarev, A. Agarwal, A. Rockett, H. Morkoc, W. Lambrecht and B. Segall, Applied physics letters 65 (5), 610-612 (1994).
129. J. Mickevi?ius, M. Andrulevicius, O. Ligor, A. Kadys, R. Toma?i?nas, G. Tamulaitis and E. Pavelescu, Journal of Physics D: Applied Physics 52 (32), 325105 (2019).
130. M. Zhang and X. Li, physica status solidi (b) 254 (8), 1600749 (2017).
131. Y. Ota, M. Imura, R. G. Banal and Y. Koide, Journal of Physics D: Applied Physics 55 (45), 455102 (2022).
132. S. H. Wei and A. Zunger, Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena 5 (4), 1239-1245 (1987).
133. S.-H. Wei and A. Zunger, Applied Physics Letters 72 (16), 2011-2013 (1998).
134. C. G. Van de Walle and J. Neugebauer, Applied physics letters 70 (19), 2577-2579 (1997).
135. S.-H. Wei and A. Zunger, Physical Review B 37 (15), 8958 (1988).
136. T. Aisaka, T. Tanikawa, T. Kimura, K. Shojiki, T. Hanada, R. Katayama and T. Matsuoka, Japanese Journal of Applied Physics 53 (8), 085501 (2014).
137. Q. ZHUANG, J. KANG, S. LI and W. LIN, Surface Review and Letters 24 (06), 1750081 (2017).
138. S. Keller, S. Heikman, I. Ben-Yaacov, L. Shen, S. P. DenBaars and U. K. Mishra, Applied Physics Letters 79 (21), 3449-3451 (2001).
139. L. Wang, S. Yang, Y. Gao, J. Yang, Y. Duo, S. Song, J. Yan, J. Wang, J. Li and T. Wei, ACS Applied Materials & Interfaces 15 (19), 23501-23511 (2023).
140. M. Nong, X. Tang, C.-H. Liao, H. Cao, T. Liu, Z. Jiang, D. Chettri, K. Ren and X. Li, Applied Physics Letters 125 (17) (2024).
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明