博碩士論文 110521034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.147.44.46
姓名 李侑光(You-Guang Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 應用於光耦合隔離系統之發送端三角積分調變器
(A Design of Sigma Delta Modulator for Optical Coupling Isolation Applications)
相關論文
★ 應用於2.5G/5GBASE-T乙太網路傳收機之高成本效益迴音消除器★ 應用於IEEE 802.3bp車用乙太網路之硬決定與軟決定里德所羅門解碼器架構與電路設計
★ 適用於 10GBASE-T 及 IEEE 802.3bz 之高速低密度同位元檢查碼解碼器設計與實現★ 基於蛙跳演算法及穩定性準則之高成本效益迴音消除器設計
★ 運用改良型混合蛙跳演算法設計之近端串音干擾消除器★ 運用改良粒子群最佳化演算法之近端串擾消除器電路設計
★ 應用於多兆元網速乙太網路接收機 類比迴音消除器之最小均方演算法電路設計★ 光耦合隔離系統 之接收端晶片電路設計與實現
★ 應用於光耦合隔離系統之發送端雜訊整形 類比轉數位轉換器★ 應用於光耦合隔離系統發送端之動態縮放式 類比數位轉換器
★ 電感耦合隔離系統接收端設計與實作★ 應用於數位視頻廣播系統之頻率合成器及3.1Ghz寬頻壓控震盪器
★ 地面數位電視廣播基頻接收器之載波同步設計★ 適用於通訊系統之參數化數位訊號處理器核心
★ 以正交分頻多工系統之同步的高效能內插法技術★ 正交分頻多工通訊中之盲目頻域等化器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著科技不斷進步,我們正步入第四次工業革命,也就是工業4.0時代。其核心聚焦於互聯性、自動化、機器學習等領域。透過智能技術、演算法以及對機械設備的控制,為自動化的監控與分析技術帶來了全新突破。近年來的工業控制產品,對效率與精度提出了更高的要求。在工業設備中,測量物理傳感器信號的精確度是控制系統的核心之一。從測量的角度來看,不僅需要確保最高的精度,還必須維持安全性與可靠性。此外,由於工業控制系統經常在高危險電壓下運行,因此需要廣泛使用隔離器來保護操作人員與周邊的電子設備。本電路旨在以高精度和低功耗為設計目標,開發適用於隔離器的類比數位轉換器。
本論文實現一應用於光耦合隔離系統之發送端類比數位轉換器,於高壓與低壓應用環境皆使用之類比數位轉換器主要由三角積分調變器(Sigma-Delta Modulator, SDM)與數位降頻率波器組成。整體架構採用切換式電容開關實現,其內部電路使用浮動反向式放大器(Floating Inverter Amplifier, FIA)實現離散時間積分器,並以一四位元非同步SAR ADC實現量化器,於提高解析度的同時降低功耗。
本電路採用台積電T18HVG2與TSMC 0.18μm CMOS 1P6M製程,晶片面積分別約佔1.567 mm2與1.227 mm2,電源供應電壓分別為5V與1.2V,整體電路功耗分別為15.87 mW與100.5 μW,電路頻寬皆為40 kHz,電路取樣頻率分別為20.48 MHz與5.12 MHz,有效位元數分別為12與14 位元。
摘要(英) As technology continues to advance, we are stepping into the era of the Fourth Industrial Revolution, also known as Industry 4.0. The key focus areas include connectivity, automation, machine learning, and related domains. By utilizing intelligent technologies, algorithms, and control over mechanical devices, significant breakthroughs have been achieved in automated monitoring and analysis. In recent years, industrial control products have demanded higher efficiency and precision. Accurate measurement of physical sensor signals is one of the core elements of control systems in industrial equipment. From a measurement perspective, it is critical to ensure not only the highest level of accuracy but also safety and reliability. Additionally, since industrial control systems often operate under high-voltage conditions, isolators are widely employed to protect operators and adjacent electronic devices. This circuit aims to develop an analog-to-digital converter (ADC) for isolators, with high precision and low power consumption as the design goals.
This thesis presents the implementation of a transmitter-side ADC for optocoupler isolation systems. The ADC, suitable for both high-voltage and low-voltage applications, mainly consists of a Sigma-Delta Modulator (SDM) and a digital decimation filter. The overall architecture is realized using a switched-capacitor design, where a floating inverter amplifier (FIA) is employed to implement the discrete-time integrator. Additionally, a 4-bit asynchronous SAR ADC is used as the quantizer to enhance resolution while reducing power consumption.
The circuit is fabricated using T18HVG2 and TSMC′s 0.18μm CMOS 1P6M process, with chip areas of approximately 1.567 mm2 and 1.227 mm2. The supply voltages are 5V and 1.2V, with total power consumptions of 15.87 mW and 100.5 μW, respectively. The bandwidth of these circuits is 40 kHz, and the sampling frequencies are 20.48 MHz and 5.12 MHz, respectively. The resolutions are 12-bits and 14-bits, respectively.
關鍵字(中) ★ 類比數位轉換器
★ 三角積分調變器
★ 浮動反向式放大器
★ 連續漸進式類比數位轉換器
關鍵字(英) ★ Analog-to Digital Converter
★ Sigma-Delta Modulator
★ Floating Inverter Amplifier
★ SAR ADC
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 背景 1
1.2 研究動機 3
1.3 論文貢獻 4
第二章 三角積分調變器原理概論 5
2.1 奈奎斯特與超取樣類比數位轉換器 5
2.2 量化誤差 8
2.3 超取樣技術與雜訊移頻技術 10
2.3.1超取樣技術 10
2.3.2雜訊移頻技術 12
2.4三角積分調變器 14
2.4.1一階三角積分調變器 14
2.4.2 二階三角積分調變器 16
2.4.3 高階三角積分調變器 17
第三章 類比數位轉換器設計與模擬 19
3.1 二階回授型三角積分調變器 21
3.1.1 二階回授型三角積分調變器規格訂製 21
3.1.2 二階回授型三角積分調變器系統設計 21
3.1.3 電路非理想效應考量 23
3.1.4 電路設計 34
3.1.5 佈局前模擬結果 41
3.2 二階前饋型三角積分調變器 44
3.2.1 二階前饋型三角積分調變器規格訂製 45
3.2.2 二階前饋型三角積分調變器系統設計 46
3.2.3 電路非理想效應 47
3.2.4 電路設計 49
3.2.5 佈局前模擬結果 58
第四章 佈局考量與模擬結果 62
4.1 二階回授型三角積分調變器 62
4.1.1 佈局平面圖 62
4.1.2 佈局後模擬結果 64
4.2 二階前饋型三角積分調變器 65
4.2.1 佈局平面圖 65
4.2.2 佈局後模擬結果 67
第五章 量測規劃與考量 70
5.1 二階回授型三角積分調變器 70
5.1.1 量測規劃 70
5.1.2 量測結果 71
5.2 二階前饋型三角積分調變器 74
5.2.1 量測規劃 74
第六章 結論與未來展望 75
6.1 文獻比較 75
6.1.1 二階回授型三角積分調變器 75
6.1.2 二階前饋型三角積分調變器 76
6.2 未來展望 78
參考文獻 79
參考文獻 [1] Toshiba, “Photocouplers Optically Isolation Amplifiers,” TLP7820 datasheet, Jun.2020.
[2] T. C. Carusone, D. A. Johns, and K. W. Martin, Analog Integrated Circuit Design, 2nd ed. Hoboken, NJ: John Wiley & Sons, 2012.
[3] Behzad Razavi, Design of Analog CMOS Integrated Circuit, McGraw-Hill, New York, 2001.
[4] Xu, Weize, and Eby G. Friedman. "Clock feedthrough in CMOS analog transmission gate switches." 15th Annual IEEE International ASIC/SOC Conference. IEEE, 2002.
[5] B. Razavi, “Design of Analog CMOS Integrated Circuits,” Mcgraw-Hill, Second Edition, 2005
[6] 徐靜瑩, 應用於生醫訊號之可重組三角積分調變器設計, 國立交通大學電機學院IC設計產業專班碩士論文, 民果九十六年八月.
[7] L. Qian and S. Diao, "A 112dB SNDR Delta-Sigma Modulator for Low-Power Audio Applications," 2021 14th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), 2021, pp. 1-5.
[8] M.-C. Huang and S.-l. Liu, "A Fully Differential Comparator-Based Switched-Capacitor ?Σ Modulator," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 56, no. 5, pp. 369-373, May 2009.
[9] A. S. Kozlov and M. M. Pilipko, "A Second-order Sigma-delta Modulator with a Hybrid Topology in 180nm CMOS," 2020 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2020, pp. 144-146.
[10] Tsung-Sum Lee, Wen-Bin Lin and Dung-Lin Lee, "Design techniques for micropower low-voltage CMOS switched-capacitor delta-sigma modulator," The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS ′04., 2004, pp. iii-331.
?
[11] D. K. Shedge, P. W. Wani, D. A. Itole, S. B. Pokharkar and M. S. Sutaone, "CMOS telescopic cascode operational amplifier," 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE), Chennai, 2013, pp. 87-89, doi: 10.1109/ICGCE.2013.6823405.
[12] D. S. Shylu, J. A. M. Helan and J. Moni, "Design of 12 Bit 100MS/s Low Power Delta Sigma ADC Using Telescopic Amplifier," 2018 4th International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 2018, pp. 263-265, doi: 10.1109/ICDCSyst.2018.8605152.
[13] X. Chen, Z. -G. Wang and F. Li, "A 1-V 90.3-dB DR 100-kHz BW 4th-Order Single Bit Sigma-Delta Modulator in 40-nm CMOS Technology," 2018 IEEE 3rd International Conference on Integrated Circuits and Microsystems (ICICM), 2018, pp. 38-41.
[14] J. Silva, U. Moon, J. Steensguqrd, and G. C. Temes, “Widedband lowdistortiondelta-sigma ADC topology,” IET Electorn. Lett., vol. 37, no. 12,
[15] A. Matsuoka, T. Nezuka and T. Iizuka, "Fully Dynamic Discrete-Time ΔΣ ADC Using Closed-Loop Two-Stage Cascoded Floating Inverter Amplifiers," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 3, pp. 944-948, March 2022, doi: 10.1109/TCSII.2021.3134963.
[16] A. Matsuoka, Y. Kumano, T. Nezuka, Y. Furuta and T. Iizuka, "A 79.2-μW 19.5-kHz-BW 94.8-dB-SNDR Fully Dynamic DT ΔΣ ADC Using CLS-Assisted FIA With Sampling Noise Cancellation," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 8, pp. 2759-2763, Aug. 2023, doi: 10.1109/TCSII.2023.3255866..
[17] Y. Kou, Y. Zhao, Y. Hu, M. Zhao and Z. Tan, "A 2.44-microwatt 93.2-dB SNDR ΔΣ ADC based on Swing-Enhanced Floating Inverter Amplifier with 60× Power/Bandwidth scalable range," 2022 IEEE 16th International Conference on Solid-State & Integrated Circuit Technology (ICSICT), Nangjing, China, 2022, pp. 1-3, doi: 10.1109/ICSICT55466.2022.9963261.
[18] C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010, doi: 10.1109/JSSC.2010.2042254.
[19] J. -H. Lee and K. -Y. Lee, "A Design of Low-Power Bootstrapped CMOS Switch for 20MS/s 12-bit Charge Sharing SAR ADCs," 2021 18th International SoC Design Conference (ISOCC), Jeju Island, Korea, Republic of, 2021, pp. 5-6, doi: 10.1109/ISOCC53507.2021.9613861.
[20] X. Tang, B. Kasap, L. Shen, X. Yang, W. Shi and N. Sun, "An Energy-Efficient Comparator with Dynamic Floating Inverter Pre-Amplifier," 2019 Symposium on VLSI Circuits, Kyoto, Japan, 2019, pp. C140-C141, doi: 10.23919/VLSIC.2019.8777942.
[21] C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010, doi: 10.1109/JSSC.2010.2042254.
[22] G. L. Radulov, P. J. Quinn, P. C. W. van Beek, J. A. Hegt and A. H. M. van Roermund, "A binary-to-thermometer decoder with built-in redundancy for improved DAC yield," 2006 IEEE International Symposium on Circuits and Systems (ISCAS), Kos, Greece, 2006, pp. 4 pp.-, doi: 10.1109/ISCAS.2006.1692860.
[23] J. -H. Han, K. -I. Cho, H. -J. Kim, J. -H. Boo, J. S. Kim and G. -C. Ahn, "A 96dB Dynamic Range 2kHz Bandwidth 2nd Order Delta-Sigma Modulator Using Modified Feed-Forward Architecture With Delayed Feedback," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1645-1649, May 2021, doi: 10.1109/TCSII.2021.3066628.
[24] L. Meng et al., "A 1.2-V 2.87-μ W 94.0-dB SNDR Discrete-Time 2–0 MASH Delta-Sigma ADC," in IEEE Journal of Solid-State Circuits, vol. 58, no. 6, pp. 1636-1645, June 2023, doi: 10.1109/JSSC.2022.3208144.
?
[25] W. Chen, L. Meng, Y. Zhao, M. Zhao and Z. Tan, "A 0.5V 723nW 84.3dB-SNDR Dynamic Zoom ADC with CLS-Assisted Capacitively-Biased FIA," 2024 IEEE International Symposium on Circuits and Systems (ISCAS), Singapore, Singapore, 2024, pp. 1-4, doi: 10.1109/ISCAS58744.2024.10557899.
[26] J. -H. Han, K. -I. Cho, H. -J. Kim, J. -H. Boo, J. S. Kim and G. -C. Ahn, "A 96dB Dynamic Range 2kHz Bandwidth 2nd Order Delta-Sigma Modulator Using Modified Feed-Forward Architecture With Delayed Feedback," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5, pp. 1645-1649, May 2021, doi: 10.1109/TCSII.2021.3066628.
[27] W. -C. Lai, "A Continuous-Time Quadrature Bandpass Sigma-Delta Modulator with Capacitive Feedforward Chip Design for Phase Locked Loop Controllers," 2021 3rd International Conference on Electrical, Control and Instrumentation Engineering (ICECIE), Kuala Lumpur, Malaysia, 2021, pp. 1-5, doi: 10.1109/ICECIE52348.2021.9664715.
[28] J. Hussain, M. Usman, R. Ramzan and H. Saif, "12-bit Sigma-Delta Modulator for Biomedical Wireless Applications," 2021 15th International Conference on Open Source Systems and Technologies (ICOSST), Lahore, Pakistan, 2021, pp. 1-5, doi: 10.1109/ICOSST53930.2021.9683923.
指導教授 薛木添(Muh-Tian Shiue) 審核日期 2025-3-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明