博碩士論文 103584007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.144.101.157
姓名 林裕?  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 使用生成式人工智慧設計錯誤分析活動以提升學生真實數學問題解決能力與自信心
(Designing Error Analysis Activities for Students Using Generative AI to Improve Authentic Mathematical Problem-Solving Skills and Confidence)
相關論文
★ 探索電玩遊戲頻率對於視覺注意力表現能力的效應★ 代理表現學習模式—以動物同伴為例
★ 常用邏輯句型重組之學習★ 電腦支援國小數學文字題擬題活動初探
★ 解釋數學:透過科技支援創作與討論以增強小學生的數學溝通能力★ 提問式鷹架教學結合數位閱讀寫作系統對國小低年級學生語文能力的影響
★ 數學島:興趣驅動之國小數學線上平台設計與初步評估★ 以「猜擬題」活動增進學生數學文字題解題能力
★ 基於學生練習使用回饋之學習成效預測模型與動態題數練習機制★ 透過主題地圖與寵物同伴促進閱讀更深更廣的書籍
★ 具推薦書籍功能之閱讀島系統架構設計★ 透過學生影片創作進行國小數學學習:趣創者理論之應用
★ 英文單字樂園:學生自創字卡搭配複習機制強化英文字彙學習之系統設計及學習成效初探★ 設計與實作明日寫作系統增進國小學生寫作表現
★ 設計與實踐「提升式寫作」活動以提升國小學生寫作品質與寫作興趣★ TTPR:設計科技強化型全肢體反應為了小學生和國中生在印尼學習英語詞彙
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-8-1以後開放)
摘要(中) 本研究旨在探討GPT-4解題錯誤分析學習活動是否能夠提升五年級學生解決真實數學問題的能力,並增強他們的數學信心。真實數學問題將數學與生活情境相連,賦予數學學習更深的意義。然而,學生常常難以理解真實數學問題的複雜性以及其冗長的文字敘述,導致數學信心不足。本研究採用準實驗設計,對象為台灣北部某小學的59位五年級學生,實驗組參與了GPT-4解題錯誤分析學習活動,對照組則接受傳統教學。兩組均進行了同儕解釋活動,但實驗組聚焦於討論GPT-4解題錯誤,而對照組則由高成就學生分享解題方案。實驗組進行了登台分享活動,而對照組在小組內分享後由教師講解答案。兩組均使用相同的真實數學問題教材。研究透過解決真實數學問題的測驗與數學信心量表進行量化評估,並輔以半結構式訪談收集質性數據。結果顯示,實驗組在解決真實數學問題上有顯著提升,無論是組內前測與後測比較,還是與對照組後測比較均顯著優於對照組。此外,實驗組中的低成就學生在解決真實數學問題上的進步顯著高於對照組。實驗組中無論是高成就或低成就學生,其數學信心均顯著高於對照組。此研究確認了GPT-4在數學教育中的有效性,為教育工作者和研究人員提供了新的教學策略與研究方向。
摘要(英) Authentic mathematical problems connect mathematics to real-world scenarios, making math learning more meaningful. However, students often find it challenging to comprehend the complexity and extensive textual descriptions of authentic mathematical problems, resulting in a lack of mathematical confidence. This study aims to investigate whether error analysis learning activity of GPT-4 solutions can improve the skill of fifth-grade students to solve authentic mathematical problems and foster their mathematical confidence. A quasi-experimental design was employed, involving 59 fifth-grade students from a primary school in northern Taiwan. Both the experimental group, which participated in GPT-4-based error analysis learning activities, and the control group, which received traditional instruction, engaged in peer explanation activities. However, the experimental group focused on discussing GPT-4’s errors, while the control group involved high-achieving students sharing their solutions. Additionally, the experimental group conducted staging activities, whereas the control group transitioned directly to teacher-led explanations after group sharing. Both groups also utilized the same authentic mathematical problem materials. Quantitative assessments were conducted through tests on solving authentic mathematical problems and a mathematical confidence scale, complemented by qualitative data collected via semi-structured interviews. The results revealed that the experimental group showed significant improvement in solving authentic mathematical problems, both in pre- and post-test comparisons within the group and in post-test comparisons between groups. Furthermore, the low-achieving students in the experimental group showed a significant improvement in solving authentic mathematical problems compared to the control group. Additionally, the mathematical confidence of both high- and low-achieving students in the experimental group was significantly higher than that of the control group. This study confirms the effectiveness of GPT-4 in mathematics education, offering new teaching strategies and research directions for educators and researchers.
關鍵字(中) ★ GPT-4
★ 真實數學問題解決
★ 錯誤分析
★ 數學自信
關鍵字(英) ★ GPT-4
★ Authentic mathematical problem-solving
★ Error analysis
★ Mathematical confidence
論文目次 摘 要 i
Abstract ii
Acknowledgment iii
Table of Contents iv
List of Figures vi
List of Tables vii
1. Introduction 1
1.1 Background 1
1.2 Research questions 4
2. Literature Review 6
2.1 Authentic mathematical problem solving 6
2.2 Applying GPT-4 in mathematics education 10
2.3 Mathematical error analysis 14
2.4 Constructivism and Metacognition in AI-Based Mathematics Education 17
2.4.1 Constructivist Theory in Mathematics Learning 18
2.4.2 Metacognition and Self-Regulated Learning in Mathematics 18
2.4.3 Applying Constructivist and Metacognitive Strategies through AI-Based Error Analysis 19
2.4.4 Implications for Designing AI-Based Error Analysis Learning Activities 20
3. Error analysis learning activity of GPT-4 solutions 22
3.1 GPT-4 problem solving 23
3.2 Error analysis 24
3.3 Peer explanation 26
3.4 Staging 28
4. Methods 30
4.1 Participants 30
4.2 Materials 30
4.3 Experimental procedure 33
4.4 Evaluation tools 35
4.4.1 Authentic mathematics problem-solving assessment 35
4.4.2 Mathematical confidence scale 37
4.4.3 Interview transcription 37
5. Results 41
5.1 Authentic mathematical problem-solving performance 41
5.2 Mathematical confidence 43
5.3 Interview results 46
6. Discussion 52
6.1 Improving authentic mathematical problem-solving skills 52
6.2 Strengthening mathematical confidence 53
6.3 Educational Implications and Students′ Reflections 55
7. Conclusion 57
7.1 Summary of Findings 57
7.2 Limitations and Future Work 58
Notes 61
References 61
Appendix A Pre-test and post-test of authentic mathematics problem-solving assessment 69
Appendix B Questionnaire of students Confident in Mathematics 74
Appendix C Interview questions after the learning activity 75
Appendix D Teaching Materials with Authentic Mathematical Problems 76
Appendix E Examples of GPT-4 Solutions for Authentic Mathematical Problems 81
參考文獻 An, S., Ma, Z., Lin, Z., Zheng, N., Lou, J. G., & Chen, W. (2023). Learning from mistakes makes llm better reasoner. arXiv preprint arXiv:2310.20689. https://doi.org/10.48550/arXiv.2310.20689
AlAli, R., & Al-Barakat, A. (2022). Using structural equation modeling to assess a model for measuring creative teaching perceptions and practices in higher education. Education Sciences, 12(10), 690. https://doi.org/10.3390/educsci12100690
Almulla, M. A. (2023). Constructivism learning theory: A paradigm for students’ critical thinking, creativity, and problem solving to affect academic performance in higher education. Cogent Education, 10(1).
Alvidrez, M., Louie, N., & Tchoshanov, M. (2024). From mistakes, we learn? Mathematics teachers’ epistemological and positional framing of mistakes. Journal of Mathematics Teacher Education, 27(1), 111-136. https://doi.org/10.1007/s10857-022-09553-4
Aulia, E. T., & Prahmana, R. C. I. (2022). Developing interactive e-module based on realistic mathematics education approach and mathematical literacy ability. Jurnal Elemen, 8(1), 231-249. https://doi.org/10.29408/jel.v8i1.4569
Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. https://dx.doi.org/10.2139/ssrn.4337484
Begolli, K. N., Dai, T., McGinn, K. M., & Booth, J. L. (2021). Could probability be out of proportion? Self-explanation and example-based practice help students with lower proportional reasoning skills learn probability. Instructional Science, 49, 441-473. https://doi.org/10.1007/s11251-021-09550-9
Bingolbali, E., & Bingolbali, F. (2021). An examination of open-ended mathematics questions′ affordances. International Journal of Progressive Education, 17(4), 1–16. https://doi.org/10.29329/ijpe.2021.366.1
Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., ... & Zhang, Y. (2023). Sparks of artificial general intelligence: Early experiments with gpt-4. arXiv:2303.12712. https://doi.org/10.48550/arXiv.2303.12712
Clements, M. A. (1980). Analyzing children′s errors on written mathematical tasks. Educational Studies in Mathematics, 11(1), 1-21. . https://doi.org/10.1007/BF00369157
Collins, K. M., Jiang, A. Q., Frieder, S., Wong, L., Zilka, M., Bhatt, U., ... & Jamnik, M. (2024). Evaluating language models for mathematics through interactions. Proceedings of the National Academy of Sciences, 121(24). https://doi.org/10.1073/pnas.2318124121
Dillenbourg, P. (1999). What do you mean by collaborative learning? In P. Dillenbourg (Ed.), Collaborative-learning: Cognitive and Computational Approaches (pp. 1–19). Elsevier.
Eccles, J. S., & Wigfield, A. (2020). From expectancy-value theory to situated expectancy-value theory: A developmental, social cognitive, and sociocultural perspective on motivation. Contemporary Educational Psychology, 61. https://doi.org/10.1016/j.cedpsych.2020.101859
Fiorella, L., & Mayer, R. E. (2013). The relative benefits of learning by teaching and teaching expectancy. Contemporary Educational Psychology, 38(4), 281-288.
Fitzsimons, A., & Ni Fhloinn, E. (2023). The cops model for collaborative problem-solving in mathematics. Irish Educational Studies, 1-18. https://doi.org/10.1080/03323315.2023.2189137
Fleiss, J. L., & Cohen, J. (1973). The equivalence of weighted kappa and the intraclass correlation coefficient as measures of reliability. Educational and Psychological Measurement, 33(3), 613-619. https://doi.org/10.1177/001316447303300309
Frieder, S., Pinchetti, L., Griffiths, R. R., Salvatori, T., Lukasiewicz, T., Petersen, P., & Berner, J. (2023). Mathematical capabilities of chatgpt. Advances in Neural Information Processing Systems, 36. https://doi.org/10.48550/arXiv.2302.08760
Fuchs, D., Fuchs, L.S., Abramson, R. (2020). Peer-Assisted Learning Strategies (PALS): A Validated Classwide Program for Improving Reading and Mathematics Performance. In: Reschly, A.L., Pohl, A.J., Christenson, S.L. (eds) Student Engagement. Springer, Cham. https://doi.org/10.1007/978-3-030-37285-9_6
Fukaya, T. (2013). Explanation generation, not explanation expectancy, improves metacomprehension accuracy. Metacognition and Learning, 8, 1-18.
Graesser, A. C., Greiff, S., Stadler, M., & Shubeck, K. T. (2020). Collaboration in the 21st century: The theory, assessment, and teaching of collaborative problem solving. Computers in Human Behavior, 104.
Hesse, F., Care, E., Buder, J., Sassenberg, K., & Griffin, P. (2015). A framework for teachable collaborative problem solving skills. Assessment and Teaching of 21st Century Skills: Methods and Approach, 37-56.
Hwang, G. J., & Chen, N. S. (2023). Exploring the potential of generative artificial intelligence in education: applications, challenges, and future research directions. Journal of Educational Technology & Society, 26(2). https://doi.org/10.30191/ETS.202304_26(2).0014
Gattupalli, S., Maloy, R. W., & Edwards, S. (2023). Comparing teacher-written and AI-generated math problem solving strategies for elementary school students: Implications for classroom learning. https://doi.org/10.7275/8sgx-xj08
Inoferio, H. V., Espartero, M., Asiri, M., Damin, M., & Chavez, J. V. (2024). Coping with math anxiety and lack of confidence through AI-assisted Learning. Environment and Social Psychology, 9(5). 8. https://doi.org/10.54517/esp.v9i5.2228
?pek, Z. H., Gozum, A. I. C., Papadakis, S., & Kallogiannakis, M. (2023). Educational Applications of the ChatGPT AI System: A Systematic Review Research. Educational Process: International Journal, 12(3), 26-55. https://doi.org/10.22521/edupij.2023.123.2
Khalid, M., Saad, S., Hamid, S. R. A., Abdullah, M. R., Ibrahim, H., & Shahrill, M. (2020). Enhancing creativity and problem solving skills through creative problem solving in teaching mathematics. Creativity Studies, 13(2), 270-291. https://doi.org/10.3846/cs.2020.11027
Khasawneh, A. A., Al-Barakat, A. A., & Almahmoud, S. A. (2023). The impact of mathematics learning environment supported by error-analysis activities on classroom interaction. Eurasia Journal of Mathematics, Science and Technology Education, 19(2). https://doi.org/10.29333/ejmste/12951
Kramarski, B., & Zoldan, S. (2008). Using errors as springboards for enhancing mathematical reasoning with three metacognitive approaches. The Journal of Educational Research, 102(2), 137-151. https://doi.org/10.3200/JOER.102.2.137-151
Kshetree, M. P., Acharya, B. R., Khanal, B., Panthi, R. K., & Belbase, S. (2021). Eighth Grade Students′ Misconceptions and Errors in Mathematics Learning in Nepal. European Journal of Educational Research, 10(3), 1101-1121. https://doi.org/10.12973/eu-jer.10.3.1101
Kusmaryono, I., & Maharani, H.R. (2021). Imagination And Creative Thinking Skills Of Elementary School Students In Learning Mathematics: A Reflection Of Realistic Mathematics Education. ELEMENTARY: Islamic Teacher Journal, 9(2), 287-287. https://doi.org/10.21043/elementary.v9i2.11781
Lachner, A., Backfisch, I., Hoogerheide, V., van Gog, T., & Renkl, A. (2020). Timing matters! Explaining between study phases enhances students’ learning. Journal of Educational Psychology, 112(4), 841.
Lan, Y. J., & Chen, N. S. (2024). Teachers’ agency in the era of LLM and generative AI. Educational Technology & Society, 27(1), I-XVIII. https://www.jstor.org/stable/48754837
Larrain, M., & Kaiser, G. (2022). Interpretation of students’ errors as part of the diagnostic competence of pre-service primary school Teachers. Journal for Mathematics Didactics, 43, 39-69. https://doi.org/10.1007/s13138-022-00198-7
Laurens, T., Batlolona, F. A., Batlolona, J. R., & Leasa, M. (2017). How does realistic mathematics education (RME) improve students’ mathematics cognitive achievement? Eurasia Journal of Mathematics, Science and Technology Education, 14(2), 569-578. https://doi.org/10.12973/ejmste/76959
Lo, C. K., Hew, K. F., & Jong, M. S. Y. (2024). The influence of ChatGPT on student engagement: A systematic review and future research agenda. Computers & Education, 219. https://doi.org/10.1016/j.compedu.2024.105100
Martin, M. O., von Davier, M., & Mullis, I. V. (2020). Methods and procedures: TIMSS 2019 technical report. International Association for the Evaluation of Educational Achievement.
Ministry of Education (2019). Mathematics Syllabuses: Secondary one to four. Singapore: Author.
Mullis, I. V. S., Martin, M. O., Foy, P., Kelly, D. L., & Fishbein, B. (2020). TIMSS 2019 International Results in Mathematics and Science. Chestnut Hill, MA: TIMSS & PIRLS International Study Center, Boston College.
National Academy for Education Research (2020). Literacy-oriented assessment items research and development for teachers’ professional development (first year): Mathematics items. New Taipei: Author. Retrieved from https://ptips.ntct.edu.tw/var/file/69/1069/img/173342938.pdf (in Chinese)
National Academy for Education Research (2021). Literacy-oriented assessment items research and development for teachers’ professional development (second year): Mathematics items, New Taipei: Author. Retrieved from https://ptips.ntct.edu.tw/var/file/69/1069/img/376480000A_1100252353_ATTACH1.pdf (in Chinese)
National Council of Teachers of Mathematics (2014). Principles to actions: ensuringmathematical success for all. Reston, VA: Author.
Nilimaa, J. (2023). New examination approach for real-world creativity and problem-solving skills in mathematics. Trends in Higher Education, 2(3), 477-495. https://doi.org/10.3390/higheredu2030028
Niss,M. & Jablonka, E. (2014). Mathematical Literacy. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 391-396). Springer Netherlands. https://doi.org/10.1007/978-94-007-4978-8_100
Niss, M., & Hojgaard, T. (Eds.). (2011). Competencies and mathematical learning: Ideas and inspiration for the development of mathematics teaching and learning in Denmark. Roskilde, Denmark: Roskilde University.
Nuraina, N., Fauzi, K. M. A., & Simbolon, N. (2021). The effect of realistic mathematics educations (RME) approach based on ethnomatics on the improvement of concept understanding ability and students’ learning motivation in elementary school AlKausar City of Langsa. Budapest International Research and Critics in Linguistics and Education (BirLE) Journal, 4(1), 543–554. https://doi.org/10.33258/birle.v4i1.1707
OECD (2018). PISA 2022 Mathematics Framework (Draft). Retrieved from https://pisa2022-maths.oecd.org/
OpenAI (2022), ChatGPT: optimizing language models for dialogue, available at: https://openai.com/blog/chatgpt/
OpenAI, R. (2023). Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5). https://doi.org/10.48550/arXiv.2303.08774
Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and Instruction, 1(2), 117-175.
Pardos, Z. A., & Bhandari, S. (2023). Learning gain differences between ChatGPT and human tutor generated algebra hints. arXiv preprint arXiv:2302.06871. https://doi.org/10.48550/arXiv.2302.06871
Patero, J. L. (2023). Revolutionizing math education: Harnessing chatGPT for student success. Mathematics Education, 3(1). https://doi.org/10.48175/ijarsct-12375
Plevris, V., Papazafeiropoulos, G., & Jimenez Rios, A. (2023). Chatbots Put to the Test in Math and Logic Problems: A Comparison and Assessment of ChatGPT-3.5, ChatGPT-4, and Google Bard. AI, 4(4), 949-969. https://doi.org/10.48550/arXiv.2305.18618
Putri, D. A., Susanti, V. D., & Apriandi, D. (2020). Pengembangan Modul Berbasis RME Untuk Meningkatkan Kemampuan Literasi Matematika Siswa Kelas Xi SMK. Prima Magistra: Jurnal Ilmiah Kependidikan, 1(2), 138–146. https://doi.org/10.37478/jpm.v1i2.470
Putri, S. K., Hasratuddin, & Syahputra, E. (2019). Development of Learning Devices Based on Realistic Mathematics Education to Improve Students′ Spatial Ability and Motivation. International Electronic Journal of Mathematics Education, 14(2), 393-400. https://doi.org/10.29333/iejme/5729
Reinke, L. T., Stephan, M., Ayan-Civak, R., & Casto, A. R. (2023). Teachers’ press for contextualization to ground students’ mathematical understanding of ratio. Journal of Mathematics Teacher Education, 26(3), 335-361. http://dx.doi.org/10.1007/s10857-022-09531-w
Richey, J. E., Andres-Bray, J. M. L., Mogessie, M., Scruggs, R., Andres, J. M., Star, J. R., ... & McLaren, B. M. (2019). More confusion and frustration, better learning: The impact of erroneous examples. Computers & Education, 139, 173-190. https://doi.org/10.1016/j.compedu.2019.05.012
Rong, L., & Mononen, R. (2022). Error-analysis of students with mathematics learning difficulties in Tibet. Asian Journal for Mathematics Education, 1(1) 52-65. https://doi.org/10.1177/27527263221089357
Roorda, G., de Vries, S., & Smale-Jacobse, A. E. (2024). Using lesson study to help mathematics teachers enhance students’ problem-solving skills with teaching through problem solving. Frontiers in Education (Vol. 9, p. 1331674). https://doi.org/10.3389/feduc.2024.1331674
Roscoe, R. D. (2014). Self-monitoring and knowledge-building in learning by teaching. Instructional Science, 42, 327-351.
Rospigliosi, P. A. (2023). Artificial intelligence in teaching and learning: What questions should we ask of ChatGPT? Interactive Learning Environments, 31(1), 1-3. http://dx.doi.org/10.1080/10494820.2023.2180191
Rushton, S. J. (2018). Teaching and learning mathematics through error analysis. Fields Mathematics Education Journal, 3(1), 1-12. https://doi.org/10.1186/s40928-018-0009-y
Ryan, R. M., & Deci, E. L. (2020). Intrinsic and extrinsic motivation from a self-determination theory perspective: Definitions, theory, practices, and future directions. Contemporary Educational Psychology, 61, 101860. https://doi.org/10.1016/j.cedpsych.2020.101860
Samritin, S., Natsir, S. R., Manaf, A., & Sari, E. R. (2023). The effect of realistic mathematics education implementation in mathematics learning in elementary school. Formatif: Jurnal Ilmiah Pendidikan MIPA, 13(1). http://dx.doi.org/10.30998/formatif.v13i1.16522
Sanchez-Ruiz, L. M., Moll-Lopez, S., Nunez-Perez, A., Morano-Fernandez, J. A., & Vega-Fleitas, E. (2023). ChatGPT challenges blended learning methodologies in engineering education: A case study in mathematics. Applied Sciences, 13(10). https://doi.org/10.3390/app13106039
Santos-Trigo, M. (2024). Problem solving in mathematics education: tracing its foundations and current research-practice trends. ZDM–Mathematics Education, 1-12. https://doi.org/10.1007/s11858-024-01578-8
Schneider, W., & Artelt, C. (2010). Metacognition and mathematics education. ZDM, 42, 149-161. https://doi.org/10.1007/s11858-019-01060-w
Schunk, D. H. (2012). Learning theories an educational perspective. Pearson.
Schunk, D. H., & DiBenedetto, M. K. (2020). Motivation and social cognitive theory. Contemporary Educational Psychology, 60. https://doi.org/10.1016/j.cedpsych.2019.101832
Shakarian, P., Koyyalamudi, A., Ngu, N., & Mareedu, L. (2023). An independent evaluation of ChatGPT on mathematical word problems (MWP). arXiv preprint arXiv:2302.13814. https://doi.org/10.48550/arXiv.2302.13814
Sok, S., & Heng, K. (2023). ChatGPT for education and research: A review of benefits and risks. Cambodian Journal of Educational Research, 3(1), 110-121. https://doi.org/10.62037/cjer.2023.03.01.06
Subekti, M. A. S., & Prahmana, R. C. I. (2021). Developing interactive electronic student worksheets through discovery learning and critical thinking skills during pandemic era. Mathematics Teaching-Research Journal, 13(2), 137-176.
Supriyadi, E., & Kuncoro, K. S. (2023). Exploring the future of mathematics teaching: Insight with ChatGPT. Union: Jurnal Ilmiah Pendidikan Matematika, 11(2), 305-316. http://dx.doi.org/10.30738/union.v11i2.14898
Surya, E., & Putri, F. A. (2017). Improving mathematical problem-solving ability and self-confidence of high school students through contextual learning model. Journal on Mathematics Education, 8(1), 85-94. https://doi.org/10.22342/jme.8.1.3324.85-94
Tay, L. Y., Chan, M., Chong, S. K., Tan, J. Y., & Aiyoob, T. B. (2024). Learning of mathematics: A metacognitive experiences perspective. International Journal of Science and Mathematics Education, 22(3), 561–583. https://doi.org/10.1007/s10763-023-10385-8
Toikka, S., Eronen, L., Atjonen, P., & Havu-Nuutinen, S. (2024). Combined conceptualisations of metacognitive knowledge to understand students’ mathematical problem-solving. Cogent Education, 11(1). https://doi.org/10.1080/2331186X.2024.2357901
Van den Heuvel-Panhuizen, M., & Drijvers, P. (2020). Realistic mathematics education. Encyclopedia of Mathematics Education, 713-717. https://doi.org/10.1007/978-3-030-15789-0_170
Verschaffel, L., Schukajlow, S., Star, J., & Van Dooren, W. (2020). Word problems in mathematics education: A survey. ZDM, 52, 1-16. https://doi.org/10.1007/s11858-020-01130-4
Wang, A., Prihar, E., Haim, A., & Heffernan, N. (2024, July). Can Large Language Models Generate Middle School Mathematics Explanations Better Than Human Teachers?. In International Conference on Artificial Intelligence in Education (pp. 242-250). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-64312-5_29
Wardat, Y., Tashtoush, M. A., AlAli, R., & Jarrah, A. M. (2023). ChatGPT: A revolutionary tool for teaching and learning mathematics. Eurasia Journal of Mathematics, Science and Technology Education, 19(7). https://doi.org/10.29333/ejmste/13272
Wildgans-Lang, A., Scheuerer, S., Obersteiner, A., Fischer, F., & Reiss, K. (2020). Analyzing prospective mathematics teachers’ diagnostic processes in a simulated environment. ZDM—Mathematics Education, 52(2), 241-254. https://doi.org/10.1007/s11858-020-01139-9
Wu, J. S., Hsieh, C. J., & Huang, Y. K. (2022). An Investigation into the Performances of Sixth Graders in Answering Literacy-oriented Assessments in Mathematics.Taiwan Journal of Mathematics Education, 9(2), 87–111. https://doi.org/10.6278/tjme.202210_9(2).004
Yarman, Y., Fauzan, A., Armiati, A., & Lufri, L. (2020). Analysis of student errors in solving ordinary differential equations based on SOLO taxonomy. In Journal of Physics: Conference Series (Vol. 1554, No. 1, p. 012065). https://doi.org/10.1088/1742-6596/1554/1/012065
Zafrullah, Z., Hakim, M. L., & Angga, M. (2023). ChatGPT open AI: Analysis of mathematics education students learning interest. Journal of Technology Global, 1(01), 1-10.
Zainiyah, U. (2018). Mathematical Literacy: How if Reviewed from Mathematics Problem Solving Ability of High-Grade’s Elementary School Students. Jurnal Riset Pendidikan Matematika, 4(1), 5-14.
Zhang, D. (2017). Effects of visual working memory training and direct instruction on geometry problem solving in students with geometry difficulties. Learning Disabilities-A Contemporary Journal, 15(1), 117-138.
Zheng, S., Huang, J., & Chang, K. C. C. (2023). Why does chatgpt fall short in answering questions faithfully? arXiv preprint arXiv:2304.10513. https://doi.org/10.48550/arXiv.2304.10513
Zong, M., & Krishnamachari, B. (2023). Solving math word problems concerning systems of equations with GPT models. Machine Learning with Applications, 14. https://doi.org/10.1609/aaai.v37i13.26896
指導教授 陳德懷(Tak-Wai Chan) 審核日期 2024-12-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明