參考文獻 |
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S., & Anadkat, S. (2023). Gpt-4 technical report. arXiv preprint arXiv:2303.08774. https://doi.org/10.48550/arXiv.2303.08774
Al Emran, M., & Shaalan, K. (2014). A survey of intelligent language tutoring systems. 2014 International conference on advances in computing, communications and informatics (ICACCI), 393-399. https://doi.org/10.1109/ICACCI.2014.6968503
An, X., & Yung, Y.-F. (2014). Item response theory: What it is and how you can use the IRT procedure to apply it. SAS Institute Inc, 10(4), 364-2014.
Andrew, G. (2015). Stephen Hawking: Artificial intelligence could wipe out humanity when it gest too celver as humans will be like ants. In. Independent. https://www.ceeol.com/search/article-detail?id=760168
Aroyo, L., Dolog, P., Houben, G.-J., Kravcik, M., Naeve, A., Nilsson, M., & Wild, F. (2006). Interoperability in personalized adaptive learning. Journal of Educational Technology & Society, 9(2), 4-18. https://www.jstor.org/stable/pdf/jeductechsoci.9.2.4.pdf
Atlas, S. (2023). ChatGPT for higher education and professional development: A guide to conversational AI.
Augustin, M. (2014). How to learn effectively in medical school: test yourself, learn actively, and repeat in intervals. The Yale journal of biology and medicine, 87(2), 207.
Averell, L., & Heathcote, A. (2011). The form of the forgetting curve and the fate of memories. Journal of mathematical psychology, 55(1), 25-35. https://doi.org/10.1016/j.jmp.2010.08.009
Baidoo-Anu, D., & Ansah, L. O. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52-62. https://doi.org/10.2139/ssrn.4337484
Barla, M., Bielikova, M., Ezzeddinne, A. B., Kramar, T., ?imko, M., & Vozar, O. (2010). On the impact of adaptive test question selection for learning efficiency. Computers & Education, 55(2), 846-857. https://doi.org/10.1016/j.compedu.2010.03.016
Bayroff, A. (1964). Feasibility of a programmed testing machine.
Bednarik, L., & Kovacs, L. (2012). Implementation and assessment of the automatic question
generation module. 2012 IEEE 3rd international conference on cognitive infocommunications (CogInfoCom), 687-690. https://doi.org/10.1109/CogInfoCom.2012.6421938
Beg, A., & Beg, A. (2018). Using open technologies for automatically creating question?and?answer sets for engineering MOOCs. Computer Applications in Engineering
Education, 26(3), 617-625. https://doi.org/10.1002/cae.21913
Berking, P., & Gallagher, S. (2013). Choosing a learning management system. In Advanced
Distributed Learning (ADL) Co-Laboratories (Vol. 14, pp. 40-62).
https://adlnet.gov/assets/uploads/ChoosingAnLMS.pdf
Binali, T., Tsai, C. C., & Chang, H. Y. (2021). University students′ profiles of online learning and their relation to online metacognitive regulation and internet-specific epistemic justification [Article]. Computers & Education, 175, 16, Article 104315. https://doi.org/10.1016/j.compedu.2021.104315
Bl?tak, M. (2018). Automatic Question Generation Based on Sentence Structure Analysis. Information Sciences & Technologies: Bulletin of the ACM Slovakia, 10(2). https://doi.org/10.1017/S1351324921000139
Boden, M. A. (1996). Artificial intelligence. In. Elsevier.
https://books.google.com.tw/books?hl=zh- TW&lr=&id=_ixmRlL9jcIC&oi=fnd&pg=PP1&dq=Artificial+intelligence+M.+A.+B oden&ots=JRKMWQqAT_&sig=7vQ4Qc0reTo2MG2Atf0V6p- rgkY&redir_esc=y#v=onepage&q=Artificial%20intelligence%20M.%20A.%20Boden &f=false
Brusilovsky, P., & Millan, E. (2007). User models for adaptive hypermedia and adaptive educational systems. In The adaptive web: methods and strategies of web personalization (pp. 3-53). Springer. https://link.springer.com/chapter/10.1007/978-3- 540-72079-9_1
Carceles-Poveda, E., & Giannitsarou, C. (2007). Adaptive learning in practice. Journal of Economic Dynamics and Control, 31(8), 2659-2697. https://doi.org/10.1016/j.jedc.2006.09.004
Cepeda, N. J., Vul, E., Rohrer, D., Wixted, J. T., & Pashler, H. (2008). Spacing effects in learning: A temporal ridgeline of optimal retention. Psychological science, 19(11), 1095-1102. https://doi.org/10.1111/j.1467-9280.2008.02209
Ch, D. R., & Saha, S. K. (2018). Automatic multiple choice question generation from text: A survey. IEEE Transactions on Learning Technologies, 13(1), 14-25. https://doi.org/10.1109/TLT.2018.2889100
Chassignol, M., Khoroshavin, A., Klimova, A., & Bilyatdinova, A. (2018). Artificial Intelligence trends in education: a narrative overview. Procedia Computer Science, 136, 16-24. https://doi.org/10.1016/j.procs.2018.08.233
Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning of computer programming: A literature review. Contemporary Educational Technology, 12(2), ep272. https://doi.org/10.30935/cedtech/8247
Chen, C.-M., Lee, H.-M., & Chen, Y.-H. (2005). Personalized e-learning system using item response theory. Computers & Education, 44(3), 237-255.https://doi.org/10.1016/j.compedu.2004.01.006
Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. Ieee Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510
Chowdhary, K. (2020). Fundamentals of artificial intelligence. Springer. https://doi.org/10.1007/978-81-322-3972-7
Chowdhary, K., & Chowdhary, K. (2020). Natural language processing. Fundamentals of artificial intelligence, 603-649. https://doi.org/10.1007/978-81-322-3972-7
Cicchinelli, A., Veas, E., Pardo, A., Pammer-Schindler, V., Fessl, A., Barreiros, C., & Lindstadt, S. (2018). Finding traces of self-regulated learning in activity streams. Proceedings of the 8th international conference on learning analytics and knowledge,
?isar, S. M., ?isar, P., & Pinter, R. (2016). Evaluation of knowledge in Object Oriented Programming course with computer adaptive tests. Computers & Education, 92, 142- 160. https://doi.org/10.1016/j.compedu.2015.10.016
Corbett, A. A1DERSO1, JR 1995. Knowledge Tracing: Modeling the Acquisition of Procedural Knowledge. 8VHU 0RGHOLQJ DQG 8VHU $ GDSWHG, QWHUDFWLRQ, 4, 253-278. https://doi.org/10.1007/BF01099821
Csikszentmihalyi, M. (2014). Applications of flow in human development and education. Springer.
Davis, B., Carmean, C., & Wagner, E. D. (2009). The evolution of the LMS: From management to learning. Santa Rosa, CA: e-Learning Guild, 24. https://www.cedma- europe.org/newsletter%20articles/eLearning%20Guild/The%20Evolution%20of%20th e%20LMS%20-%20From%20Management%20to%20Learning%20(Oct%2009).pdf
Deena, G., & Raja, K. (2022). Objective Type Question Generation using Natural Language Processing. International Journal of Advanced Computer Science and Applications, 13(2). https://doi.org/10.14569/ijacsa.2022.0130263
Dempster, F. N. (1996). Distributing and managing the conditions of encoding and practice. Memory, 317-344. https://doi.org/10.1016/B978-012102570-0/50011-2
Dijkstra, R., Genc, Z., Kayal, S., & Kamps, J. (2022). Reading Comprehension Quiz Generation using Generative Pre-trained Transformers. iTextbooks@ AIED,
dos Santos, W. O., Bittencourt, I. I., Isotani, S., Dermeval, D., Marques, L. B., & Silveira, I. F. (2018). Flow theory to promote learning in educational systems: Is it really relevant? Revista Brasileira de Informatica na Educacao, 26(02), 29. https://doi.org/10.5753/rbie.2018.26.02.29
du Boulay, B. (2016). Artificial intelligence as an effective classroom assistant. IEEE Intelligent Systems, 31(6), 76-81. https://doi.org/10.1109/MIS.2016.93
Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., Baabdullah, A. M., Koohang, A., Raghavan, V., & Ahuja, M. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of
Information Management, 71, 102642.
https://doi.org/10.1016/j.ijinfomgt.2023.102642
Edelen, M. O., & Reeve, B. B. (2007). Applying item response theory (IRT) modeling to questionnaire development, evaluation, and refinement. Quality of life research, 16, 5- 18.
Ellis, G. D., Voelkl, J. E., & Morris, C. (1994). Measurement and analysis issues with explanation of variance in daily experience using the flow model. Journal of leisure research, 26(4), 337-356. https://doi.org/10.1080/00222216.1994.11969966
Embretson, S. E., & Reise, S. P. (2013). Item response theory. Psychology Press. https://doi.org/doi.org/10.4324/9781410605269
Escalante, J., Pack, A., & Barrett, A. (2023). AI-generated feedback on writing: insights into efficacy and ENL student preference. International Journal of Educational Technology in Higher Education, 20(1), 57. https://link.springer.com/article/10.1186/s41239-023- 00425-2
Flamm, K. (1988). Creating the computer: government, industry, and high technology. Brookings Institution Press.
Gobel, S., & Mehm, F. (2013). Personalized, adaptive digital educational games using narrative game-based learning objects. In Serious Games and Virtual Worlds in Education, Professional Development, and Healthcare (pp. 74-84). IGI Global. https://doi.org/10.4018/978-1-4666-3673-6.ch005
George, D., & Mallery, P. (2019). IBM SPSS statistics 26 step by step: A simple guide and reference. Routledge.
Glenberg, A. M. (1976). Monotonic and nonmonotonic lag effects in paired-associate and recognition memory paradigms. Journal of Verbal Learning and Verbal Behavior, 15(1), 1-16.
Gomes, A., & Mendes, A. J. (2007). Learning to program-difficulties and solutions. International Conference on Engineering Education–ICEE,
Grevisse, C. (2023). Comparative Quality Analysis of GPT-Based Multiple Choice Question Generation. International Conference on Applied Informatics,
Graves, A. (2012). Long short-term memory. Supervised sequence labelling with recurrent neural networks, 37-45. https://doi.org/10.1007/978-3-642-24797-2_4
Gupta, R., Park, J. B., Bisht, C., Herzog, I., Weisberger, J., Chao, J., Chaiyasate, K., & Lee, E. S. (2023). Expanding cosmetic plastic surgery research with ChatGPT. Aesthetic Surgery Journal, 43(8), 930-937.
Hamet, P., & Tremblay, J. (2017). Artificial intelligence in medicine. Metabolism, 69, S36- S40. https://doi.org/10.1016/j.metabol.2017.01.011
Holzinger, A., Langs, G., Denk, H., Zatloukal, K., & Muller, H. (2019). Causability and explainability of artificial intelligence in medicine. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 9(4), e1312.
https://doi.org/10.1002/widm.1312
Hwang, G.-J., & Chen, N.-S. (2023). Editorial Position Paper. Educational Technology & Society, 26(2). https://www.jstor.org/stable/48720991
Hwang, G.-J., Xie, H., Wah, B. W., & Ga?evi?, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. In (Vol. 1, pp. 100001): Elsevier.
Indurthi, S. R., Raghu, D., Khapra, M. M., & Joshi, S. (2017). Generating natural language question-answer pairs from a knowledge graph using a RNN based question generation model. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 1, Long Papers, 376-385. https://aclanthology.org/E17-1036.pdf
Javaid, M., Haleem, A., Singh, R. P., Khan, S., & Khan, I. H. (2023). Unlocking the opportunities through ChatGPT Tool towards ameliorating the education system. BenchCouncil Transactions on Benchmarks, Standards and Evaluations, 3(2), 100115.
Jenkins, T. (2001). The motivation of students of programming. Proceedings of the 6th annual conference on Innovation and technology in computer science education,
Jensen, F. V., & Nielsen, T. D. (2007). Bayesian networks and decision graphs (Vol. 2). Springer. https://doi.org/10.1007/978-0-387-68282-2
Johnson, S. D., Aragon, S. R., & Shaik, N. (2000). Comparative analysis of learner satisfaction and learning outcomes in online and face-to-face learning environments. Journal of interactive learning research, 11(1), 29-49.
Karpicke, J. D., & Roediger III, H. L. (2007). Repeated retrieval during learning is the key to long-term retention. Journal of memory and language, 57(2), 151-162. https://doi.org/10.1016/j.jml.2006.09.004
Karpicke, J. D., & Roediger III, H. L. (2008). The critical importance of retrieval for learning. science, 319(5865), 966-968.
Kasurinen, J., & Nikula, U. (2009). Estimating programming knowledge with Bayesian knowledge tracing. ACM SIGCSE Bulletin, 41(3), 313-317.
Kerr, P. (2016). Adaptive learning. Elt Journal, 70(1), 88-93. https://doi.org/10.1093/elt/ccv055
Khvalchik, M., & Kulkarni, A. (2017). Open-domain non-factoid question answering. International Conference on Text, Speech, and Dialogue, 290-298. https://doi.org/10.1007/978-3-319-64206-2_33
Kla?nja-Mili?evi?, A., Vesin, B., Ivanovi?, M., & Budimac, Z. (2011). E-Learning personalization based on hybrid recommendation strategy and learning style identification. Computers & Education, 56(3), 885-899.
Kosar, T., Ostoji?, D., Liu, Y. D., & Mernik, M. (2024). Computer Science Education in ChatGPT Era: Experiences from an Experiment in a Programming Course for Novice Programmers. Mathematics, 12(5), 629. https://doi.org/10.3390/math12050629
Lam, M. S., Chan, E. Y., Lee, V., & Yu, Y.-T. (2008). Designing an automatic debugging assistant for improving the learning of computer programming. International Conference on Hybrid Learning and Education,
Le, N.-T., Kojiri, T., & Pinkwart, N. (2014). Automatic question generation for educational applications–the state of art. Advanced computational methods for knowledge engineering, 325-338. https://doi.org/10.1007/978-3-319-06569-4_24
Liddy, E. D. (2001). Natural language processing.
Lin, C. F., Yeh, Y.-c., Hung, Y. H., & Chang, R. I. (2013). Data mining for providing a
personalized learning path in creativity: An application of decision trees. Computers &
Education, 68, 199-210.
Linacre, J. M. (2000). Computer-adaptive testing: A methodology whose time has come. Liu, D., Dai, H., Zhang, Y., Li, Q., & Zhang, C. (2020). Deep knowledge tracking based on
attention mechanism for student performance prediction. 2020 IEEE 2nd International Conference on Computer Science and Educational Informatization (CSEI), 95-98. https://doi.org/10.1109/CSEI50228.2020.9142472
Liu, M., Calvo, R. A., & Rus, V. (2010). Automatic question generation for literature review writing support. International conference on intelligent tutoring systems, 45-54. https://doi.org/10.1007/978-3-642-13388-6_9
Lu, O. H., Huang, A. Y., Tsai, D. C., & Yang, S. J. (2021). Expert-Authored and Machine- Generated Short-Answer Questions for Assessing Students Learning Performance. Educational Technology & Society, 24(3), 159-173. https://www.jstor.org/stable/27032863
Luxton-Reilly, A. (2016). Learning to program is easy. Proceedings of the 2016 ACM Conference on Innovation and Technology in Computer Science Education,
Luxton, D. D. (2014). Recommendations for the ethical use and design of artificial intelligent care providers. Artificial intelligence in medicine, 62(1), 1-10.
M Alshater, M. (2022). Exploring the role of artificial intelligence in enhancing academic performance: A case study of ChatGPT. Available at SSRN. https://doi.org/10.2139/ssrn.4312358
McCarthy, J., Minsky, M. L., Rochester, N., & Shannon, C. E. (2006). A proposal for the dartmouth summer research project on artificial intelligence, august 31, 1955. AI magazine, 27(4), 12-12.
McDaniel, M. A., Anderson, J. L., Derbish, M. H., & Morrisette, N. (2007). Testing the testing effect in the classroom. European journal of cognitive psychology, 19(4-5), 494-513. https://doi.org/10.1080/09541440701326154
Mhlanga, D. (2023). Open AI in education, the responsible and ethical use of ChatGPT towards lifelong learning. Education, the Responsible and Ethical Use of ChatGPT Towards Lifelong Learning (February 11, 2023). https://doi.org/10.2139/ssrn.4354422
Milano, S., McGrane, J. A., & Leonelli, S. (2023). Large language models challenge the future of higher education. Nature Machine Intelligence, 5(4), 333-334.
https://doi.org/10.1038/s42256-023-00644-2
Mitkov, R. (2003). Computer-aided generation of multiple-choice tests. Proceedings of the HLT-NAACL 03 workshop on Building educational applications using natural language processing,
Montenegro-Rueda, M., Fernandez-Cerero, J., Fernandez-Batanero, J. M., & Lopez-Meneses, E. (2023). Impact of the implementation of ChatGPT in education: A systematic review. Computers, 12(8), 153.
Montero, S., Arora, A., Kelly, S., Milne, B., & Mozer, M. (2018). Does Deep Knowledge Tracing Model Interactions among Skills? International Educational Data Mining Society.
Murugan, S., & Ramakrishnan, B. S. (2022). Automatic morpheme-based distractors generation for fill-in-the-blank questions using listwise learning-to-rank method for agglutinative language. Engineering Science and Technology, an International Journal, 26, 100993. https://doi.org/10.1016/j.jestch.2021.04.012
Paiva, J. C., Leal, J. P., & Figueira, A. (2022). Automated assessment in computer science education: A state-of-the-art review. ACM Transactions on Computing Education (TOCE), 22(3), 1-40. https://doi.org/10.1145/3513140
Paramythis, A., & Loidl-Reisinger, S. (2003). Adaptive learning environments and e-learning standards. Second european conference on e-learning,
Pardos, Z. A., & Bhandari, S. (2023). Learning gain differences between ChatGPT and human tutor generated algebra hints. arXiv preprint arXiv:2302.06871.
Pashler, H., Zarow, G., & Triplett, B. (2003). Is temporal spacing of tests helpful even when it inflates error rates? Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1051.
Pavlik Jr, P. I., & Anderson, J. R. (2005). Practice and forgetting effects on vocabulary memory: An activation?based model of the spacing effect. Cognitive science, 29(4), 559-586.
Peterson, L. R., Wampler, R., Kirkpatrick, M., & Saltzman, D. (1963). Effect of spacing presentations on retention of a paired associate over short intervals. Journal of Experimental Psychology, 66(2), 206.
Piech, C., Bassen, J., Huang, J., Ganguli, S., Sahami, M., Guibas, L. J., & Sohl-Dickstein, J. (2015). Deep knowledge tracing. Advances in neural information processing systems, 28.
Pinter, R., Maravi? ?isar, S., Kovari, A., Major, L., ?isar, P., & Katona, J. (2020). Case study: students’ code-tracing skills and calibration of questions for computer adaptive tests. Applied Sciences, 10(20), 7044. https://doi.org/10.3390/app10207044
Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
Pintrich, P. R. (2000). Multiple goals, multiple pathways: The role of goal orientation in learning and achievement. Journal of educational psychology, 92(3), 544. https://doi.org/10.1037/0022-0663.92.3.544
Poole, D. I., Goebel, R. G., & Mackworth, A. K. (1998). Computational intelligence (Vol. 1). Oxford University Press Oxford. https://www.cs.ubc.ca/~poole/ci/front.pdf
Rasti-Behbahani, A. (2021). Why digital games can be advantageous in vocabulary learning. Theory and practice in language studies, 11(2). https://doi.org/https://doi.org/10.17507/tpls.1102.01
Robins, A., Rountree, J., & Rountree, N. (2003). Learning and teaching programming: A review and discussion. Computer science education, 13(2), 137-172. https://doi.org/10.1076/csed.13.2.137.14200
Rodriguez-Martinez, J. A., Gonzalez-Calero, J. A., & Saez-Lopez, J. M. (2020). Computational thinking and mathematics using Scratch: an experiment with sixth- grade students. Interactive Learning Environments, 28(3), 316-327.
Roediger III, H. L., & Karpicke, J. D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological science, 17(3), 249-255.
Rowland, C. A. (2014). The effect of testing versus restudy on retention: a meta-analytic review of the testing effect. Psychological bulletin, 140(6), 1432. https://doi.org/10.1037/a0037559
Rus, V., & Arthur, C. G. (2009). The question generation shared task and evaluation challenge. The University of Memphis. National Science Foundation,
Scheuneman, J. D., & Gerritz, K. (1990). Using differential item functioning procedures to explore sources of item difficulty and group performance characteristics. Journal of Educational Measurement, 27(2), 109-131. https://doi.org/doi.org/10.1111/j.1745- 3984.1990.tb00737.x
Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational research review, 22, 142-158.
Sisti, H. M., Glass, A. L., & Shors, T. J. (2007). Neurogenesis and the spacing effect: learning over time enhances memory and the survival of new neurons. Learning & memory, 14(5), 368-375. https://doi.org/10.1101/lm.488707
Skadberg, Y. X., & Kimmel, J. R. (2004). Visitors’ flow experience while browsing a Web site: its measurement, contributing factors and consequences. Computers in Human Behavior, 20(3), 403-422. https://doi.org/10.1016/S0747-5632(03)00050-5
Smolen, P., Zhang, Y., & Byrne, J. H. (2016). The right time to learn: mechanisms and optimization of spaced learning. Nature Reviews Neuroscience, 17(2), 77-88.
Stokel-Walker, C., & Van Noorden, R. (2023). What ChatGPT and generative AI mean for science. Nature, 614(7947), 214-216. https://doi.org/10.1038/d41586-023-00340-6
Tang, X., Yin, Y., Lin, Q., Hadad, R., & Zhai, X. (2020). Assessing computational thinking: A systematic review of empirical studies. Computers & Education, 148, 103798.
Tian, H., Lu, W., Li, T. O., Tang, X., Cheung, S.-C., Klein, J., & Bissyande, T. F. (2023). Is ChatGPT the ultimate programming assistant--how far is it? arXiv preprint arXiv:2304.11938. https://doi.org/10.48550/arXiv.2304.11938
Tsai, D. C., Huang, A. Y., Lu, O. H., & Yang, S. J. (2021). Automatic question generation for repeated testing to improve student learning outcome. 2021 International Conference on Advanced Learning Technologies (ICALT), 339-341. https://doi.org/10.1109/ICALT52272.2021.00108
Tsai, M.-J., Wang, C.-Y., & Hsu, P.-F. (2019). Developing the computer programming self- efficacy scale for computer literacy education. Journal of Educational Computing Research, 56(8), 1345-1360. https://doi.org/10.1177/0735633117746747
Tu, Y.-F., & Hwang, G.-J. (2023). University students’ conceptions of ChatGPT-supported learning: a drawing and epistemic network analysis. Interactive Learning Environments, 1-25.
Underwood, B. J. (1970). A breakdown of the total-time law in free-recall learning. Journal of Verbal Learning and Verbal Behavior, 9(5), 573-580.
van der Zant, T., Kouw, M., & Schomaker, L. (2013). Generative artificial intelligence. Springer. https://doi.org/10.1007/978-3-642-31674-6_8
Vlach, H. A., & Sandhofer, C. M. (2012). Distributing learning over time: The spacing effect in children’s acquisition and generalization of science concepts. Child development, 83(4), 1137-1144. https://doi.org/10.1111/j.1467-8624.2012.01781.x
Wang, L., Sy, A., Liu, L., & Piech, C. (2017). Deep knowledge tracing on programming exercises. Proceedings of the fourth (2017) ACM conference on learning@ scale,
Wang, T., & Mitrovic, A. (2002). Using neural networks to predict student′s performance. International Conference on Computers in Education, 2002. Proceedings.,
Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
Woolf, B. P. (2010). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Morgan Kaufmann.
Xie, H., Chu, H.-C., Hwang, G.-J., & Wang, C.-C. (2019). Trends and development in technology-enhanced adaptive/personalized learning: A systematic review of journal publications from 2007 to 2017. Computers & Education, 140, 103599.
Xiong, X., Zhao, S., Van Inwegen, E. G., & Beck, J. E. (2016). Going deeper with deep knowledge tracing. International Educational Data Mining Society.
Xue, G., Mei, L., Chen, C., Lu, Z.-L., Poldrack, R., & Dong, Q. (2011). Spaced learning enhances subsequent recognition memory by reducing neural repetition suppression. Journal of cognitive neuroscience, 23(7), 1624-1633.
Yan, Y., Hara, K., Nakano, H., Kazuma, T., & He, A. (2016). A method to describe student learning status for personalized computer programming e-learning environment. 2016 IEEE 30th International Conference on Advanced Information Networking and Applications (AINA),Yilmaz, R., & Yilmaz, F. G. K. (2023). The effect of generative artificial intelligence (AI)- based tool use on students′ computational thinking skills, programming self-efficacy and motivation. Computers and Education: Artificial Intelligence, 100147.
Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701. https://doi.org/10.48550/arXiv.1212.5701 |