博碩士論文 111554006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.16.130.16
姓名 曾珮涵(Pei-Han Tseng)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 利用協作型焊接機器人及AI系統輔助學習焊接之研究
(A Study of Using Collaborative Welding Robots and AI Systems for Facilitating Welding Learning)
相關論文
★ 同步表演機器人之建構與成效評估★ 探討國小學童使用電子書多媒體註記系統結合註記分享機制對其學習行為與時間之影響
★ 先備知識對註記式多媒體電子書的影響研究:從個別環境到分享環境★ Facilitating EFL speaking and writing with peer-tutoring and storytelling strategies in authentic learning context
★ An investigation into CKEL-supported EFL learning with TPR to reveal the importance of pronunciation and interactive sentence making★ Investigation of Facilitating Physics Learning using Ubiquitous-Physics APP with Learning Map and Discussion Board in Authentic Contexts
★ 智慧互動SmartVpen在真實情境對於英文學習之影響★ 利用合作虛擬化的網絡設計輔助計算機網路學習
★ 探討擴展合作式多媒體認知理論和其對EFL聽力與口語能力之影響 - 結合動覺辨識和學習者設計內容之猜謎遊戲★ 在真實情境中利用智慧機制提升國小學生之外語口說及對話能力之評估
★ 探討在真實情境下教師回饋對學習認知與學習持續性之影響★ 註釋、對話代理和協作概念圖支持大學生議論文寫作和後設認知的培養
★ Developing and Validating the Questionnaire and Its Model for Sustainable and Scalable Authentic Contextual Learning Supported by Mobile Apps★ 探討個人化、情境化及社會化的智慧機制 輔助真實情境國小幾何學習與其對學習成效之影響
★ Investigation of smart mechanisms for authentic contextual learning with sensor and recognition technologies★ 探討智慧回饋如何影響學習時眼動和觸控 操作的表現-以 Covid-19 快篩模擬為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 焊接在現代製造業中扮演著至關重要的角色,是連接材料的關鍵工藝,廣泛應用於汽車、航空航太及重工業等領域。本研究在探討公司導入協作型焊接機器人(半自動化)並結合AI Training系統後,對焊道品質的影響、焊工對自動化技術的認知、學習態度及專注度。本研究將6名受測者分為實驗組及控制組,控制組直接使用協作型機器人的Cobots系統,實驗組加入AI Training系統作為輔助使用Cobots系統。進行簡單、中等、困難程度的焊接任務實驗,共計五週。爾後進行問卷和訪談調查,並結合實驗所得的資料進行分析如下。
首先,AI Training系統的導入對提升焊工的系統操作理解及焊道品質具有顯著影響。與未使用 AI Training 的控制組相比,實驗組受測者在系統操作理解與焊接品質上均表現更優異,特別是在後測中平均成績提升超過30%,顯示 AI Training能顯著提升焊接精準度與穩定性。AI Training系統更激發了焊工的學習動機與興趣,特別是透過視覺化焊道定位與友善的操作界面,讓受測者能更投入學習,且減少焊接錯誤率。起初部分受測者會對技術存有抗拒心理,但透過任務學習逐漸建立信心並展現更正向的學習態度。研究也發現,使用AI Training系統的焊工在學習專注度上顯著高於控制組,其在中等及困難任務中的專注力均有所提升,表明系統對專注力的正面影響並促進實際操作成效。最後從問卷與訪談中得知,多數焊工對協作型焊接機器人的Cobots系統及AI Training系統持高度認可態度。實驗組更認為AI Training系統不僅降低焊接參數設定的難度,還提升了工作效率與操作信心。
本研究也收集了焊工對於半自動化焊接設備的使用體驗及其對未來智慧焊接技術的看法。受測者普遍認為此技術能促進焊接效率與品質的提升,並對未來智慧化、自動化的發展抱有高度期待。本研究最後提出相關建議,以期推動製造業的焊接技術朝向智慧化、自動化發展,並提供有價值的參考。
摘要(英) Welding is a critical process in modern manufacturing, serving as a key method for joining materials. It is extensively employed across industries such as automotive, aerospace, and heavy machinery. This study investigates the impact of integrating collaborative welding robots (semi-automated) with an AI training system on welding quality, as well as workers’ perceptions of automation, learning attitudes, and levels of concentration. Six participants were divided into an experimental group and a control group. The control group used the collaborative robots (Cobots) system directly, while the experimental group utilized the Cobots system with AI Training assistance. The study involved welding tasks of varying complexity (simple, moderate, and advanced) conducted over five weeks. Surveys and interviews were subsequently carried out, and the experimental data were analyzed as follows:
The results demonstrate that the AI Training system significantly enhances workers′ understanding of system operations and weld quality. Compared to the control group, the experimental group showed superior performance, with post-test scores increasing by over 30% on average, indicating the effectiveness of AI Training in improving welding accuracy and stability. The AI Training system also stimulated workers’ motivation and interest in learning, especially through its visualized weld path positioning and user-friendly interface, encouraging greater engagement and reducing welding errors. Initially, some participants exhibited resistance to the technology, but through task-based learning, they gradually gained confidence and adopted a more positive attitude.
The study also revealed that workers using the AI Training system demonstrated significantly higher levels of focus than the control group, particularly during moderate and challenging tasks. This indicates that the system positively influences focus and enhances practical performance. Furthermore, surveys and interviews indicated that most workers held a highly favorable attitude toward the Cobots and AI Training systems. Participants in the experimental group reported that the AI Training system not only reduced the complexity of welding parameter settings but also improved efficiency and confidence in operations.
In addition, the study gathered insights into workers’ experiences with semi-automated systems, and their perspectives on the future of intelligent welding technologies. Participants generally acknowledged the potential of these technologies to improve welding efficiency and quality and expressed optimism regarding the advancement of intelligent and automated welding solutions. This study concludes by offering recommendations to guide the development of welding technology toward greater intelligence and automation, providing a valuable reference for both industry and academia.
關鍵字(中) ★ 協作型焊接機器人
★ AI Training系統
★ 半自動化技術
★ 智慧焊接技術
關鍵字(英) ★ Collaborative Welding Robots
★ AI Training System
★ Semi-automation System
★ Intelligent Welding Technology
論文目次 摘要 I
Abstract II
致謝詞 IV
目錄 V
圖目錄 VIII
表目錄 X
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究問題 3
第二章 文獻探討 4
2.1 焊接技術的學習與應用 4
2.1.1 焊接技術的基礎與學習特性 4
2.1.2 協作型焊接機器人的引入對學習的影響及應用 5
2.2 科技輔助工作 6
2.2.1 科技輔助工作的發展歷程 6
2.2.2 人工智慧在工作中的應用 7
2.3 協作型機器人的介紹 7
2.3.1 協作型機器人的歷史 7
2.3.2 協作型機器人的優勢 8
2.3.3 協作型機器人的相關研究 9
2.4 焊接技術與人機協作的挑戰與未來趨勢 11
2.4.1 焊接技術在智慧製造中的挑戰 11
2.4.2 未來焊接技術與協作機器人的發展趨勢 11
第三章 研究系統 13
3.1 Cobots 系統 13
3.2 AI Training 系統 18
3.2.1 AI Training系統與Cobots系統間的關係 18
3.2.2 AI Training系統操作介紹 19
第四章 研究方法 29
4.1 研究架構 29
4.1.1 控制變項 29
4.1.2 自變項 30
4.1.3 依變項 30
4.2 實驗流程 31
4.3 研究對象 33
4.4 實驗活動 34
4.4.1 簡單直線任務 34
4.4.2 中等多段式任務 36
4.4.3 困難3D任務 37
4.5 研究工具 39
4.6 資料蒐集與處理 39
第五章 結果分析與討論 41
5.1 Cobots系統學習成就分析 41
5.1.1 前測及後測評比說明 41
5.1.2 前測及後測結果分析 42
5.2 受測者於實驗時之學習行為分析 48
5.3 AI Training介入後受測者的學習情形及影響 50
5.4 科技接受模型(TAM)問卷分析 52
5.4.1 系統易用性 52
5.4.2 系統有用性 54
5.4.3 活動有用性 55
5.4.4 滿意度 57
5.4.5 系統使用意圖 58
5.5 受測者對協作型焊接機器人的看法 59
第六章 結論與建議 61
6.1 結論 61
6.2 限制與未來研究 62
參考文獻 64
附錄 69
參考文獻 Akella, P., Peshkin, M., Colgate, E. D., Wannasuphoprasit, W., Nagesh, N., Wells, J., ... & Peacock, B. (1999). Cobots for the automobile assembly line. In Proceedings 1999 IEEE international conference on robotics and automation (Cat. No. 99CH36288C) (Vol. 1, pp. 728-733). IEEE. https://doi.org/10.1109/robot.1999.770061
Ali, M. I., Patel, P., & Breslin, J. G. (2019). Middleware for real-time event detection andpredictive analytics in smart manufacturing. In 2019 15th international conference on distributed computing in sensor systems (DCOSS) (pp. 370-376). IEEE. https://doi.org/10.1109/dcoss.2019.00079
American Welding Society. (2020). AWS D1.1: Structural welding code—Steel. American Welding Society.
Ansari, M. F. (2022). A quantitative study of risk scores and the effectiveness of AI-Based cybersecurity awareness training programs. International Journal of Smart Sensor and Adhoc Network, 1–8. https://doi.org/10.47893/ijssan.2022.1212
ASME. (2021). ASME Section IX: Welding, brazing, and fusing qualifications. American Society of Mechanical Engineers.
Benotsmane, R., Kovacs, G., & Dudas, L. (2019). Economic, social impacts and operation of smart factories in industry 4.0 focusing on simulation and artificial intelligence of collaborating robots. Social Sciences, 8(5), 143. https://doi.org/10.3390/socsci8050143
Boschetti, G., Faccio, M., & Granata, I. (2022). Human-Centered Design for Productivity and Safety in Collaborative Robots cells: a new methodological approach. Electronics, 12(1), 167. https://doi.org/10.3390/electronics12010167
Canfield, S. L., Owens, J. S., & Zuccaro, S. G. (2021). Zero moment control for Lead-Through teach programming and process monitoring of a collaborative welding robot. Journal of Mechanisms and Robotics, 13(3). https://doi.org/10.1115/1.4050102
Chen, S., & Lv, N. (2013). Research evolution on intelligentized technologies for arc welding process. Journal of Manufacturing Processes, 16(1), 109–122. https://doi.org/10.1016/j.jmapro.2013.07.002
Colgate, J. E., Wannasuphoprasit, W., & Peshkin, M. A. (1996). CoBots: Robots for collaboration with human operators. Dynamic Systems and Control. https://doi.org/10.1115/imece1996-0367
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
Dimitropoulos, N., Michalos, G., Arkouli, Z., Kokotinis, G., & Makris, S. (2024). Industrial collaborative environments integrating AI, Big Data and Robotics for smart manufacturing. Procedia CIRP, 128, 858–863. https://doi.org/10.1016/j.procir.2024.04.027
Djuric, A., Rickli, J. L., Jovanovic, V. M., & Foster, D. (2017). Hands-on learning environment and educational curriculum on collaborative robotics. In 2017 ASEE Annual Conference & Exposition. https://doi.org/10.18260/1-2--28428
Dogra, V. (2018). Application of welding process parameters using AI algorithm. Turk Bilgisayar Ve Matematik E?itimi Dergisi, 9(2), 632–642. https://doi.org/10.17762/turcomat.v9i2.13866
Hicks, J. G. (2001). Welded design: theory and practice. Woodhead Publishing.
Gualtieri, L., Rauch, E., & Vidoni, R. (2020). Emerging research fields in safety and ergonomics in industrial collaborative robotics: A systematic literature review. Robotics and Computer-Integrated Manufacturing, 67, 101998.
https://doi.org/10.1016/j.rcim.2020.101998
Gupta, S. K., & Lyons, K. W. (2017). Advances in Robots for Manufacturing.
Iftikhar, S. H., Mourad, A.-H. I., Sheikh-Ahmad, J., Almaskari, F., & Vincent, S. (2023). A comprehensive review on optimal welding conditions for thermoplastic polymers and their composites. Polymers, 13(8), 1208. https://doi.org/10.3390/polym13081208
ISO/TS 15066 (2016). Robots and robotic devices - Collaborative robots. https://www.iso.org/standard/62996.html
ISO 17637 (2016). Visual testing of fusion-welded joints. https://www.iso.org/standard/67259.html
ISO 5817 (2023). Welding-Fusion-welded joints in steel, nickel, titanium and their alloys (beam welding excluded)-Quality levels for imperfections. https://www.iso.org/obp/ui/#iso:std:iso:5817:ed-4:v1:en
Kotadia, H. R., Franciosa, P., & Ceglarek, D. (2019). Challenges and opportunities in remote laser welding of steel to aluminium. MATEC Web of Conferences, 269, 02012. https://doi.org/10.1051/matecconf/201926902012
Kruger, J., Lien, T., & Verl, A. (2009). Cooperation of human and machines in assembly lines. CIRP Annals, 58(2), 628–646. https://doi.org/10.1016/j.cirp.2009.09.009
Kumar, A. A., Zaman, U. K., & Plapper, P. (2023). Collaborative robots. Handbook of manufacturing systems and design (pp. 90–103). CRC Press. https://doi.org/10.1201/9781003327523-8
Kumar, P., Bhamu, J., & Sangwan, K. S. (2021). Analysis of Barriers to Industry 4.0 adoption in Manufacturing Organizations: an ISM Approach. Procedia CIRP, 98, 85–90. https://doi.org/10.1016/j.procir.2021.01.010
Lee, J., Fong, J., Kok, B. C., & Soh, H. (2020). Getting to know one another: calibrating intent, capabilities and trust for Human-Robot collaboration. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 6296–6303. https://doi.org/10.1109/iros45743.2020.9340736
Li, X., et al. (2019). Addressing skills gaps in smart manufacturing workforce. Industrial Training Journal, 23(4), 95–108.
Majeed, T., Wahid, M. A., Alam, M. N., Mehta, Y., & Siddiquee, A. N. (2021). Friction stir welding: A sustainable manufacturing process. Materials Today Proceedings, 46, 6558–6563. https://doi.org/10.1016/j.matpr.2021.04.025
Miller, J., Brown, T., & Davis, M. (2017). Welding fundamentals and applications. McGraw-Hill.
Morandini, S., Fraboni, F., De Angelis, M., Puzzo, G., Giusino, D., & Pietrantoni, L. (2023). The impact of artificial intelligence on workers’ skills: upskilling and reskilling in organisations. Informing Science the International Journal of an Emerging Transdiscipline, 26, 039–068. https://doi.org/10.28945/5078
Park, J., Kang, H., & Yoon, M. (2019). Applications of AI in high-risk workplaces. Journal of Smart Systems.
Pizzagalli, S. L., Kuts, V., & Otto, T. (2021). User-centered design for Human-Robot Collaboration systems. IOP Conference Series Materials Science and Engineering, 1140(1), 012011. https://doi.org/10.1088/1757-899x/1140/1/012011
Polanyi, M. (1967). The tacit dimension. University of Chicago Press.
Rikala, P., Braun, G., Jarvinen, M., Stahre, J., & Hamalainen, R. (2024). Understanding and measuring skill gaps in Industry 4.0. Technological Forecasting and Social Change, 201, 123206. https://doi.org/10.1016/j.techfore.2024.123206
Schou, C., Andersen, R. S., Chrysostomou, D., Bogh, S., & Madsen, O. (2018). Skill-based instruction of collaborative robots in industrial settings. Robotics and Computer-Integrated Manufacturing, 53, 72–80. https://doi.org/10.1016/j.rcim.2018.03.008
Siciliano, B., & Khatib, O. (Eds.). (2016). Springer handbook of robotics. Springer Berlin, Heidelberg
Pantano, M., Blumberg, A., Regulin, D., Hauser, T., Saenz, J., & Lee, D. (2022). Design of a collaborative modular end effector considering human values and safety requirements for industrial use cases. In Springer proceedings in advanced robotics (pp. 45–60). https://doi.org/10.1007/978-3-030-96359-0_4
Wang, B., Hu, S. J., Sun, L., & Freiheit, T. (2020). Intelligent welding system technologies: State-of-the-art review and perspectives. Journal of Manufacturing Systems, 56, 373–391. https://doi.org/10.1016/j.jmsy.2020.06.020
Wang, C., Wang, J., Jiang, P., Cao, L., Mi, G., & Zhou, Q. (2020). Application of sensing techniques and artificial intelligence-based methods to laser welding real-time monitoring: A critical review of recent literature. Journal of Manufacturing Systems, 57, 1–18. https://doi.org/10.1016/j.jmsy.2020.07.021
Yang , G., Bellingham, J., Dupont, P. E., Fischer, P., Floridi, L., & Full, R. (2018). The grand challenges of science robotics. Science Robotics, 3(14), eaar7650. https://doi.org/10.1126/scirobotics.aar7650
Zhao, Z., Muller, M., & Schmidt, H. (2021). iRoCo: Intuitive robot control from anywhere using a smartwatch. Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), 1234–1240. IEEE. https://doi.org/10.1109/ICRA57147.2024.10610805
指導教授 黃武元(Wu-Yuin Hwang) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明