博碩士論文 111353001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.218.72.253
姓名 盧德宇(Te-Yu Lu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 間隙對AP路由器系統狹小空間中單/雙壓電風扇降低熱點溫度效果的影響
(Impact of Clearance on Hot Spot Temperature Reduction Using Single and Dual Piezoelectric Fans for Cooling in the Confined Space of an AP Router System)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-24以後開放)
摘要(中) 本研究探討壓電風扇在無線接取器(AP Router)系統狹小空間內,降低熱點溫度的效能,並分析風扇與散熱表面間隙的影響。隨著無線接取器運算能力的提高,熱管理成為一大挑戰,尤其在狹窄空間中,傳統風扇因體積大、能耗高而難以有效散熱。相比之下,壓電風扇具備體積小、能耗低等優勢,非常適合應用於高密度電子設備。
本研究通過實驗測試了單個及雙個壓電風扇在不同間隙配置下的散熱效果,並詳細分析了風扇配置與散熱性能之間的關聯性。結果顯示,在經過優化的最佳間隙條件下,單個壓電風扇能夠有效降低熱點溫度,溫度降幅達到約12.7°C,展示出顯著的降溫效果。而在雙風扇的配置下,風扇之間的協同作用進一步提升了散熱效率,最大溫差達到21.9°C,表明雙風扇的使用能顯著改善設備的熱管理性能。
本研究證實,壓電風扇相較傳統風扇具備明顯優勢,特別是在狹小空間內進行散熱時。它不僅有效降低設備熱點溫度,還具備小型化和節能特性,使其成為替代傳統風扇的潛力解決方案。這些結果為壓電風扇在無線接取器及其他高密度電子設備中的應用提供了實驗支持,未來可進一步優化其設計以提升散熱效能。
摘要(英) This study investigates the effectiveness of piezoelectric fans in reducing hotspot temperatures within the confined space of an AP (Access Point) router system and analyzes the impact of fan-to-surface clearance. As the computational power of AP routers increases, thermal management has become a major challenge, particularly in confined spaces where traditional fans struggle to provide efficient cooling due to their large size and high energy consumption. In contrast, piezoelectric fans offer advantages such as compact size and low power consumption, making them highly suitable for high-density electronic devices.

In this study, the cooling performance of single and dual piezoelectric fans was tested under different clearance configurations, and the correlation between fan configurations and cooling performance was analyzed in detail. Results showed that, under optimized clearance conditions, a single piezoelectric fan effectively reduced hotspot temperatures with a temperature reduction of approximately 12.7°C, demonstrating a significant cooling effect. In a dual-fan configuration, the synergistic effect between fans further enhanced cooling efficiency, achieving a maximum temperature difference of up to 21.9°C, indicating that dual fans can significantly improve thermal management.

This study confirms that piezoelectric fans have clear advantages over traditional fans, especially for cooling in confined spaces. Not only do they effectively reduce device hotspot temperatures, but they also feature miniaturization and energy-saving benefits, making them a potential alternative to traditional fans. These findings provide experimental support for the application of piezoelectric fans in AP routers and other high-density electronic devices, and future design optimizations could further enhance their cooling performance.
關鍵字(中) ★ 路由器
★ 多重熱點
★ 壓電風扇
★ 間隙
關鍵字(英) ★ AP Router
★ Multiple hot spot
★ Piezoelectric fan
★ Clearance
論文目次 中文提要 ………………………………………………………… i
英文提要 ………………………………………………………… iii
誌謝 ………………………………………………………… v
目錄 ………………………………………………………… vi
圖目錄 ………………………………………………………… viii
表目錄 ………………………………………………………… ix
第一章 緒論…………………………………………………… 1
1-1 介紹…………………………………………………… 1
1-2 壓電風扇應用………………………………………… 2
1-3 壓電風扇形式………………………………………… 3
1-4 研究動機……………………………………………… 4
第二章 實驗設備與規劃……………………………………… 6
2-1 實驗風扇說明………………………………………… 6
2-2 數據簡化……………………………………………… 11
2-3 不確定性分析………………………………………… 12
2-4 控制方程式與數據簡化……………………………… 12
2-5 實驗設備……………………………………………… 14
2-6 實驗設計……………………………………………… 17
2-6-1 實驗一: 不同葉片尺寸對散熱效果的影響………… 17
2-6-2 實驗一: 不同間隙對散熱效果的影響……………… 20
第三章 流場模擬與分析……………………………………… 24
3-1 模擬背景與設定……………………………………… 24
3-2 模擬結果……………………………………………… 25
3-3 模擬分析結論………………………………………… 26
第四章 實驗結果……………………………………………… 30
4-1 實驗一結果…………………………………………… 30
4-1-1 大葉片風扇結果……………………………………… 30
4-1-2 標準葉片風扇結果…………………………………… 33
4-1-3 小葉片風扇結果……………………………………… 35
4-2 實驗二結果…………………………………………… 39
4-2-1 散熱片距離(??)與溫度的關係…………………… 39
4-2-2 上方塑膠片距離(D)與溫度的關係……………… 40
第五章 結論…………………………………………………… 44
5-1 結論…………………………………………………… 44
5-2 未來展望……………………………………………… 45
參考文獻 ………………………………………………………… 48
附錄一 壓電風扇噪音實驗…………………………………… 52
附錄二 風速量測配置與結果………………………………… 56
參考文獻 ﹝1﹞X.L. Li, G.H. Tang, Y.H. Fan, D.L. Yang, A performance recovery coefficient for thermal-hydraulic evaluation of recuperator in supercritical carbon dioxide Brayton cycle, Energ. Convers. Manage. 256 (2022) 115393.
﹝2﹞Y.H. Fan, G.H. Tang, Q. Sheng, X.L. Li, D.L. Yang, S–CO2 cooling heat transfer mechanism based on pseudo-condensation and turbulent field analysis, Energy 262 (2023) 125470.
﹝3﹞W. Wang, Z. Yao, Y.-Z. Li, M. Yuan, X.-W. Ning, Experimental and numerical study on the heat transfer performance inside integrated sublimator driven coldplate for aerospace applications, Int. Commun. Heat Mass Transf. 128 (2021) 105636.
﹝4﹞G. Zhou, S. Yang, Y. Liu, J. Wang, Y. Bian, et al., Experimental study on thermal runaway propagation characteristics of NCM811 lithium-ion batteries with different SOCs induced by dual heat sources, Int. Commun. Heat Mass Transf. 149 (2023) 107089.
﹝5﹞X.L. Li, G.H. Tang, D.L. Yang, Y.H. Fan, Performance evaluation of heater and recuperator in Brayton cycles for power and energy storage, Appl. Therm. Eng. 244 (2024) 122739.
﹝6﹞J. Zhang, X. Wu, M. Song, K. Chen, An effective method for hot spot temperature optimization in heat conduction problem, Appl. Therm. Eng. 227 (2023) 120325.
﹝7﹞S.I. Hasan, S. Kucuka, M.A. Ezan, Cooling performance of a piezo-fan oscillating in a vertical channel with natural convection, Int. Commun. Heat Mass Transf. 141 (2023) 106602.
﹝8﹞H.C. Su, H.Y. Xu, Investigation of a double oscillating-fan cooling device using electromagnetic force, Appl. Therm. Eng. 103 (2016) 553–563.
﹝9﹞J.Q. Hu, T.T. Geng, K. Wang, Y.H. Fan, C.H. Min, Mechanisms for improving fin heat dissipation through the oscillatory airflow induced by vibrating blades, Int. J. Heat Mass Transf. 220 (2024) 124965.
﹝10﹞A. Hales, X. Jiang, Geometric optimisation of piezoelectric fan arrays for low energy cooling, Int. J. Heat Mass Transf. 137 (2019) 52–63.
﹝11﹞X.-J. Li, J.Z. Zhang, X.M. Tan, An investigation on convective heat transfer performance around piezoelectric fan vibration envelope in a forced channel flow, Int. J. Heat Mass Transf. 126 (2018) 48–65.
﹝12﹞C.N. Lin, Heat transfer enhancement analysis of a cylindrical surface by a piezoelectric fan, Appl. Therm. Eng. 50 (2013) 693–703.
﹝13﹞X.L. Zhong, K.C. Chan, S.C. Fu, L.Q. Wang, C.Y.H. Chao, Enhancement of piezoelectric fan cooling by geometrical arrangements, Int. J. Heat Mass Transf. 199 (2022) 123479.
﹝14﹞S.-L. Ma, J.-W. Chen, H.-Y. Li, J.-T. Yang, Mechanism of enhancement of heat transfer for plate-fin heat sinks with dual piezoelectric fans, Int. J. Heat Mass Transf. 90 (2015) 454–465.
﹝15﹞J. Tiwari, T. Yeom, Enhancement of channel-flow convection heat transfer using piezoelectric fans, Appl. Therm. Eng. 191 (2021) 116917.
﹝16﹞K. Kim, T. Yeom, Numerical study on channel-flow convection heat transfer enhancement with piezoelectric fans under various operating conditions, Appl. Therm. Eng. 219 (2023) 119674.
﹝17﹞Y. Chen, D. Peng, Y. Liu, Heat transfer enhancement of turbulent channel flow using a piezoelectric fan, Int. J. Heat Mass Transf. 147 (2019) 118964.
﹝18﹞J.Q. Hu, C.H. Min, X.G. Yang, K. Wang, Numerical and experimental study on heat transfer characteristics of single vibrating blade in a channel flow, J. Therm. Sci. 32 (2023) 982–992.
﹝19﹞Xuyang ZHOUa, Shuang WUb, Xiaoxu WANGb, Zhenshan WANGa, Qixuan ZHUa, Jinshuai SUNa,Panfeng HUANGb, Xuewen WANGa, Wei HUANGa, Qianbo LU, Review on piezoelectric actuators: materials, classifications, applications, and recent trends, Front. Mech. Eng. 2024, 19(1): 6
﹝20﹞Saeed S. Ba Hashwan, Mohd Haris Md. Khir, Illani Mohd Naw, Mohamad Radzi Ahmad, Mehwish Hanif, A review of piezoelectric MEMS sensors and actuators for gas detection application, Discover Nano 2023, 18:25
﹝21﹞Shiui Wang, Lei Wen, Xiaopeng Gong, Ji Liang, Xinggang Hou, Feng Hou, Piezoelectric-Based Energy Conversion and Storage Materials, Batteries 2023, 9(7)
﹝22﹞Soo Hyun Park, Myong Hun Oh, Yong-Hwan Kim, Minsuk Choi, Effects of freestream on piezoelectric fan performance, Journal of Fluids and Structures 87 (2019) 302–318
﹝23﹞Sheng-Lun Ma, Jing-Wei Chen, Hung-Yi Li, Jing-Tang Yang, Mechanism of enhancement of heat transfer for plate-fin heat sinks with dual piezoelectric fans, International Journal of Heat and Mass Transfer 90 (2015) 454–465
﹝24﹞Z.M. Fairuz, S.F. Sufian, M.Z. Abdullah, M. Zubair, M.S. Abdul Aziz, Effect of piezoelectric fan mode shape on the heat transfer characteristics, International Communications in Heat and Mass Transfer 52 (2014) 140-151
﹝25﹞Xin-Jun Li, Jing-zhou Zhang, Xiao-ming Tan, An investigation on convective heat transfer performance around piezoelectric fan vibration envelope in a forced channel flow, International Journal of Heat and Mass Transfer 126 (2018) 48–65
﹝26﹞Xinjun Li, Weiwei Chen, Shihua Lu, Characterization of the thermal performance of multi piezoelectric fans for cooling a semi-cylindrical concave surface, International Journal of Mechanical Sciences 208 (2021) 106672
﹝27﹞Thomas Jin-Chee Liu , Yu-Shen Chen, Hsi-Yang Ho, Jyun-Ting Liu, Vibration and cooling performances of piezoelectric cooling fan:
numerical and experimental investigations, MATEC Web of Conferences 306,04002 (2020)
﹝28﹞Jinqi Hu, Yuanhong Fan, Xiaoxue Wang, Chunhua Min, Kun Wang, Mechanism of hot spot temperature reduction by a new combined system of vibrating blade and vortex generator, International Communications in Heat and Mass Transfer 156 (2024) 107610
﹝29﹞Ioan Sauciuc, Gregory M. Chrysler, Hakan Erturk, Piezoelectric air jet augmented cooling for electronic devices, US7633753B2
﹝30﹞Yujia Chen, Di Peng, Yingzheng Liu, Heat transfer enhancement of turbulent channel flow using a piezoelectric fan, International Journal of Heat and Mass Transfer 147 (2020) 118964
﹝31﹞R.J. Moffat, Describing the uncertainties in experimental results, Exp. Thermal Fluid Sci. 1 (1988) 3–17.
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2024-12-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明