博碩士論文 111353020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:18.119.126.21
姓名 曾怡駿(Yi-Jiun Tzeng)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 深切緩進電化學放電加工於石英玻璃之創成特性研究
(Research on the Creation Characteristics of Quartz Glass by Creep-Feed Electro-Chemical Discharge Machining)
相關論文
★ 混氣放電線切割加工 N-Type 單晶碳化矽之研究★ 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究
★ 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究★ 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究
★ 6吋碳化矽晶圓碇之線放電加工參數優化與粒子追蹤模擬分析★ 以電解混氣法輔助微電化學高深徑比鑽孔加工之研究
★ 機械手臂輔助電解複合研磨系統應用於積層製造鈦合金葉片拋光★ 高深徑比微細孔電化學加工 多重物理量耦合模擬之研究
★ 混氣電解電漿拋光法於不銹鋼管內表面品質改善之研究★ 靜電感應電化學加工法於哈氏合金內管壁拋光特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-20以後開放)
摘要(中) 本研究旨在探討電化學放電加工結合電腦數值控制輔助及深切緩
進技術在石英玻璃加工中的應用。傳統式電化學放電加工為分層式加
工,而本實驗嘗試使用深切緩進三軸同動的方式,直接完成直槽加工,
研究使用階段式片狀碳化鎢電極,對厚度為 2 mm 的石英玻璃進行加
工。研究的主要目的是分析不同加工參數:加工電壓、電解液濃度、初
始間隙、進給速度等對石英玻璃表面粗糙度、溝槽形貌、電極消耗、
材料移除率等進行詳細觀察,並根據實驗結果找出最佳的加工參數。
電化學放電加工利用了電解液與電極之間的放電作用實現對石英
玻璃的有效加工,實驗結果顯示,加工電壓對表面粗糙度有明顯影響。
初始間隙與溝槽的成型深度有密切關連。電解液濃度對溝槽的形貌有
顯著影響,進給速度則影響加工時間及擴槽量。
經過最佳化參數的設置後,所得到的溝槽形貌尺寸:溝槽寬度為
2.804 mm、溝槽長度為 1.172 mm、成型深度為 0.071 mm、表面粗糙
度為1.987 μm、材料移除率0.00065 g/min。深切緩進電化學放電加工
材料移除率0.00082 g/min,相較分層式電化學放電加工提升幅度17 %
的材料移除率。
摘要(英) This study aims to explore the application of Electrochemical Discharge
Machining (ECDM) combined with Computer Numerical Control (CNC)
assistance and creep-feed technology in the machining of quartz glass.
Traditional ECDM uses a layer-by-layer machining approach, but this study
attempts to employ a creep-feed three-axis synchronized method to directly
machine straight grooves. A stepped sheet tungsten carbide electrode is used
to machine quartz glass with a thickness of 2 mm.
The primary objective of this research is to analyze the effects of
various machining parameters—such as machining voltage, electrolyte
concentration, initial gap, and feed rate—on the surface roughness, groove
morphology, electrode wear, and material removal rate of quartz glass.
Detailed observations are conducted, and optimal machining parameters are
identified based on experimental results.
ECDM utilizes the discharge action between the electrolyte and the
electrode to achieve effective machining of quartz glass. Experimental
results show that machining voltage significantly affects surface roughness,
the initial gap is closely related to the forming depth of the groove, and
electrolyte concentration has a significant impact on groove morphology.
Meanwhile, feed rate influences machining time and groove expansion.
After optimizing the machining parameters, the resulting groove
dimensions are as follows: groove width of 2.804 mm, groove length of
1.172 mm, forming depth of 0.071 mm, surface roughness of 1.987 μm, and
material removal rate of 0.00065 g/min. Using the creep-feed ECDM method,
II
the material removal rate increased to 0.00082 g/min, representing a 17%
improvement compared to the layer-by-layer ECDM method.
關鍵字(中) ★ 電化學放電加工
★ 電腦數值控制
★ 深切緩進
★ 石英玻璃
關鍵字(英) ★ electrochemical discharge machining
★ computer numerical control
★ Creep-Feed
★ quartz glass
論文目次 摘要 I
ABSTRACT II
目錄 V
圖目錄 IX
表目錄 XII
緒論 1
1-1 研究背景 1
1-2 研究動機與目的 3
1-3 文獻回顧 4
1-3-1 電化學放電加工機制、參數等相關文獻 4
1-3-2 深切緩進機制、參數等相關文獻 8
1-4 論文架構 10
第二章 實驗基礎理論 11
2-1 化學蝕刻原理 11
2-2 放電加工原理 12
2-3 電化學放電加工原理 13
2-3-1 電化學放電加工之放電形成機制 15
2-4 電腦數值控制介紹 17
2-4-1 電腦數值控制程式設計、製作流程 18
2-5 深切緩進原理 19
第三章 實驗設備與方法 20
3-1 實驗設備 20
1.ECDM加工系統 20
2.電腦數值控制設備 21
3.放電線切割機 21
4.直流電源供應器 22
5.電子天秤 22
6.超音波清洗機 23
7.雷射共軛焦兼白光干涉顯微鏡 24
8.半自動影像測定儀 25
9.濺鍍機 26
10.掃描式電子顯微鏡 27
3-2 實驗材料 28
1.工具電極 28
2.工件 29
3.輔助電極 30
4.電解液 31
3-3 微細片狀電極製作 32
3-4 試片製作 34
3-5 電解液調配 34
3-6 電解液液面高度控制 34
3-7 實驗流程與方法 35
3-8 實驗參數設定 38
3-9 量測方法 39
3-9-1 溝槽寬度(Width)量測: 39
3-9-2 溝槽長度(Length)量測: 39
3-9-3 溝槽深度(Depth)量測: 40
3-9-4 溝槽表面粗糙度(Surface roughness)量測: 40
結果與討論 41
4-1 不同電壓參數對電化學放電於石英玻璃加工溝槽之觀察 41
4-1-1 加工電壓選定 42
4-1-2 加工電壓觀察 43
4-2 初始間隙對加工深度之結果觀察 50
4-3 電解液濃度與工件表面之加工情形 54
4-4 不同進給速度與工件表面之加工結果 59
4-5 電極損耗 62
4-6 深切緩進與材料移除率探討 65
第五章 結論 69
未來展望 71
參考文獻 72
參考文獻 [1] C.S. Taylor, “Investigation on anode discharge in electrolysis of melted
sodium chloride”, Trans. Electro-chemical Society, Vol.47, pp. 301-305,
1925.
[2] H. H. Kellog, “The interface observation of poles in water electrolysis”,
Journal of Electrochemical Society, Vol. 97, pp.133-137, 1950.
[3] H. Kurafuji, and K. Suda, “Electrical discharge drilling of glass”, Ann.
CIRP. Vo. 16, pp. 415-9, 1968.
[4] V. Raghuram, “Experimental observations of the ECD phenomena”,
Dissertation Thesis, Indian Institute of Technology, Kanpur, India, 1994.
[5] V. Raghuarm, T. Pramila, Y. G. Srinivasa, and K. Narayanasamy, “Effect
of the circuit parameters on the electrolytes in the electrochemical
discharge phenomenon”, Journal of Materials Processing Technology, Vol.
52, pp. 301-318, 1995.
[6] I. Basak, A. Ghosh, “Mechanism of spark generation during
electrochemical discharge machining: a theoretical model and experimental
verification”, Journal of Materials Processing Technology, Vol. 62, pp. 46
53, 1996.
[7] I. Basak, and A. Ghosh, “Mechanism of material removal in
electrochemical discharge machining: a theoretical model and experimental
verification,” Journal of Materials Processing Technology, vol. 71, pp.
350–359, 1997.
[8] B. Bhattacharyya, B. N. Doloi, and S. K. Sorkhel, “Experimental
investigations into electrochemical discharge machining (ECDM) of non
72
conductive ceramic materials”, Journal of Materials Processing
Technology, Vol. 95, pp. 145-154, 1999.
[9] C. T. Yang, S. S. Ho, and B. H. Yan, “Micro hole machining of borosilicate
glass trough electrochemical discharge machining (ECDM)”, Key
Engineering Materials, Vol. 196, pp. 149-166, 2001.
[10] V. Fascio, H. H. Langen, H. Bieuler, and Ch. Comninellis, “Investigations
of the spark assisted chemical engraving”, Electrochemistry
Communications, Vol. 5, pp. 203-207, 2003.
[11] R. Wuthrich, V. Fascio, ‘‘Machining of non-conducting materials using
electrochemical discharge phenomenon–an overview’ International Journal
of Machine Tools and Manufacture 45, pp. 1095- 1108, 2005.
[12] 彭文陽,電化學放電現象與製程應用之研究,博士論文,國立台灣大
學機械 工程研究所,民國九十四年九月
[13] C.T. Yang, S.L. Song, B.H. Yan, F.Y. Huang, ‘‘Improving machining
performance of wire electrochemical discharge machining by adding SiC
abrasive to electrolyte’’ International Journal of Machine Tools &
Manufacture 46, pp. 2044-2050, 2006.
[14] Z.P, Zheng, H.C. Su, F.Y. Huang, and B.H. Yan, “The tool geometrical
shape and pulse-off time of pulse voltage effects in a Pyrex glass
electrochemical discharge microdrilling process”, Journal of
Micromechanics and Microengineering, Vol. 17, pp. 265-272, 2007.
[15] M. Jalali, P. Maillard, and R. Wuthrich, “Toward a better understanding of
glass gravity-feed micro-hole drilling with electrochemical discharges”,
Journal of Micromechanics and Microengineering, Vol. 19, 045001, 2008.
73
[16] X.D. Cao, B.H. Kim, and C.N. Chu, “Micro-structuring of glass with
features less than 100_m by electrochemical discharge machining”,
Precision Engineering, Vol. 33, pp. 459–465, 2009.
[17] C.P. Cheng, K.L. Wu, C.C. Mai, Y.S. Hsu, and B.H. Yan, “Magnetic field
assisted electrochemical discharge machining”, Journal of Micromechanics
and Microengineering, Vol.20, 075019, 2010.
[18] M. R. Razfar, A. Behroozfar, and J. Ni, ‘‘Study of the effects of tool
longitudinal oscillation on the machining speed of electrochemical
discharge drilling of glass’’, Precision Engineering, Vol. 38, pp. 885-89.
2014.
[19] K. R. Kolhekar, and M. Sundaram, ‘‘Study of gas film characterization and
its effect in electrochemical discharge machining’’, Precision Engineering,
Vol. 53, pp. 203-211, 2018.
[20] H. Chen, and Y. Liu, Z. Wei, ‘‘Ultrasonic Vibration Assisted Micro
Electrochemical Discharge Drilling Technology’’, IEEE International
Conference on Robotics and Biomimetics, pp. 2839-2843, 2019.
[21] Viveksheel Rajput, Mudimallana Goud, and Narendra Mohan Suri, ‘‘Finite
Element Modeling for Comparing the Machining Performance of Different
Electrolytes in ECDM’’, Research Aarticle -Mechanical Engineering, 2020
[22] Y. Chen, X. Feng, and G. Xin, “Experimental Study on Ultrasonic
Vibration Assisted WECDM of Glass Microstructures with a High Aspect
Ratio”, Micromachines (Basel), Vol. 12, 2021.
[23] J. C. Hung, and T. K. Su, “Machining characteristic of diamond grit-coated
tools in grinding-aided ECDM”, Materials and Manufacturing Processes,
Vol. 38, pp. 1851-1599, 2023.
74
[24] L. C. Zhang, T. Suto, H. Noguchi, and T. Waida, “A Study of Creep-Feed
Grinding of Metallic and Ceramic Materials”, Journal of Materials
Processing Technology, Vol. 48 pp. 267-274, 1995.
[25] A. Cameron, R. Bauer, A. Warkentin, “An investigation of the effects of
wheel-cleaning parameters in creep-feed grinding”, International Journal of
Machine Tools & Manufacture, Vol. 50 pp. 126-130, 2009.
[26] N. Ortega, H. Bravo, I. Pombo, J.A. Sanchez, and G. Vidal, “Thermal
analysis of creep feed grinding,” Procedia Engineering, Vol. 132, pp.
1061–1068, 2015.
[27] J. Dang, H. Zang, Q. An, W. Ming, and M. Chen, “Feasibility study of
creep feed grinding of 300M steel with zirconium corundum wheel,”
Chinese Journal of Aeronautics, Vol. 34 pp. 565-578, 2021.
[28] W. Kuang, Q. Miao, W. Ding, Y. Zhao, and Z. Zhao, “Residual stresses of
turbine blade root produced by creep-feed profile grinding: Three
dimensional simulation based on workpiece–grain interaction and
experimental verification,” Journal of Manufacturing Processes, Vol. 62,
pp. 67–79, 2021.
指導教授 洪榮洲(Jung-Chou Hung) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明