博碩士論文 106383003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.142.131.56
姓名 姜洵(Hsun Chiang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 溶解型與鍵結型血管內皮生長因子共同誘導內皮細胞形成微血管叢之生物體外實驗與模擬
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 生物體外微血管叢的培養研究在組織工程與再生醫學領域中至關重要。血管內皮生長因子(VEGF)是誘導微血管生成的主要訊號蛋白之一,其可溶解於細胞培養液中,亦可與生物凝膠中的特定蛋白質成分形成鍵結。然而目前促成微血管發育的完整驅動機制仍不清楚,學者們之主流共識為鍵結型血管內皮生長因子主導細胞遷徙,相反地溶解型血管內皮生長因子的作用則在多數研究中被忽略不計。另一方面,依據生長因子誘發細胞運動建立的化學機轉理論模型,與考量細胞貼附於生物凝膠材料的傳統力學平衡模型之間,目前亦缺乏有系統的聯繫。本論文首先設計了一系列實驗,以探討兩種型式血管內皮生長因子在微血管生成過程所扮演的角色,利用包含膠原蛋白與纖維網蛋白之自製簡易生物凝膠,於生物體外培養人類臍靜脈內皮細胞,最終形成完整的類微血管細胞網路。實驗結果表明溶解型生長因子可誘導內皮細胞發生形態轉變,骨架拉伸後之細長形細胞將有助於微血管形成;同時鍵結型生長因子提供具有方向性之細胞趨觸性訊號,促使內皮細胞遷徙聚集,以維持整體細胞網路之穩定。其後依據實驗發現,本論文建構了一套混合數學模型以模擬微血管的生長過程。其中採用離散之細胞帕茲模型預測每一隻內皮細胞的運動方式,並使用偏微分方程式計算生物凝膠的變形程度以及生長因子的分布動態。計算結果顯示了預測之細胞網路拓撲與實驗影像具有良好的一致性,並表明只有當力學與化學機轉充分發揮作用時,方能得到高度發育之微血管網路結構。
摘要(英) Capillary plexus cultivation is crucial in tissue engineering and regenerative medicine. Vascular endothelial growth factor (VEGF) is one of the primary signal proteins stimulating blood vessel formation, which can be soluble in the medium or protein-bound to the substrate. However, less attention has been paid to distinguishing the specific stimulations by soluble and bound form. On the other hand, theoretical simulations have also been conducted to supplement the expensive experimental works, whereas the mechanisms connecting mechanical and chemical stimuli remained undefined. In this paper, a series of experiments were conducted to explore the respective effects of the two VEGF forms. An in-house synthesized biogel comprising a definite concentration of collagen and fibronectin was designed to cultivate human umbilical vein endothelial cells to form capillary-like networks. The results indicated that the soluble VEGF promptly induced the cells to morphologize from round to elongated shape, which contributed to forming network cords. Simultaneously, the bound VEGF provided long-term stimulation, causing the cells to migrate and differentiate into the final capillary-like network. Furthermore, a hybrid model was developed for simulating short-term in vitro capillary incubation, where the cellular Potts model was used to predict individual cell migration, and continuum mechanics to quantify biogel deformation and VEGF transport dynamics. By bridging the mechanical regulation and chemical stimulation in the model, the results showed good agreement between the predicted network topology and experiments. These results revealed that the capillary-like networks could develop in high integrity only when the mechanical and chemical couplings worked adequately, with the cell morphology and haptotaxis driven by the two forms of VEGF functioning simultaneously.
關鍵字(中) ★ 內皮細胞
★ 細胞形態學
★ 血管內皮生長因子
★ 類微血管網路
★ 細胞帕茲模型
關鍵字(英) ★ capillary-like network
★ endothelial cells
★ morphology
★ VEGF
★ cellular Potts model
論文目次 中文摘要 i
Abstract ii
目錄 iii
表目錄 v
圖目錄 vi
符號表 viii
第一章 緒論 1
1.1. 研究動機 1
1.2. 文獻回顧 3
1.2.1. 生物體外微血管培養之實驗內容 3
1.2.2. 微血管發育實驗中的生物凝膠材料 4
1.2.3. 血管內皮生長因子之研究發展歷史 5
1.2.4. 生物體外微血管發育過程之數值模擬研究 6
1.2.4.1. 細胞連續體模型與細胞個體模型 6
1.2.4.2. 混合模型的發展與微血管生成機轉之研究探討 7
1.3. 研究目的 9
1.4. 論文架構 10
第二章 實驗設計與方法 17
2.1. 實驗藥品與材料 17
2.2. 內皮細胞繼代培養與冷凍貯存 18
2.3. 生物體外培養類微血管網路實驗 19
2.4. 實驗數據處理方法 21
第三章 數學模型 25
3.1. 統御方程式 25
3.1.1. 細胞帕茲模型 25
3.1.2. 生物凝膠方程式 29
3.1.3. 血管內皮生長因子方程式 31
3.2. 參數設定 33
3.3. 初始條件 34
3.4. 邊界條件 35
3.5. 數值模擬軟體設置 36
3.6. 數據處理方法 41
第四章 實驗結果與分析 48
4.1. 生物體外培養內皮細胞實驗 48
4.2. 纖維網蛋白與血管內皮生長因子對內皮細胞生長之影響 49
4.3. 溶解型與鍵結型血管內皮生長因子對內皮細胞之刺激效果 50
4.4. 鍵結型血管內皮生長因子之螢光免疫染色分析 53
第五章 數值模擬結果與分析 61
5.1. 細胞網路發展之數值模擬驗證 61
5.2. 血管內皮生長因子對細胞網路之影響 62
5.3. 細胞遷徙行為之趨勢分析 64
5.4. 血管內皮生長因子相關參數分析 65
5.5. 生物凝膠相關參數分析 67
第六章 結論與未來展望 84
參考文獻 86
參考文獻 Apte, R. S., Chen, D. S. & Ferrara, N. (2019). VEGF in signaling and disease: beyond discovery and development. Cell, 176(6), 1248-1264.
Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284(5415), 770-776.
Ausprunk, D. H. & Folkman, J. (1977). Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvascular research, 14(1), 53-65.
Banerjee, A., Chitnis, U. B., Jadhav, S. L., Bhawalkar, J. S. & Chaudhury, S. (2009). Hypothesis testing, type I and type II errors. Industrial psychiatry journal, 18(2), 127-131.
Belair, D. G., Miller, M. J., Wang, S., Darjatmoko, S. R., Binder, B. Y., Sheibani, N. & Murphy, W. L. (2016). Differential regulation of angiogenesis using degradable VEGF-binding microspheres. Biomaterials, 93, 27-37.
Bhatia, S., Babbar, R., Zehravi, M., Singh, B., Chandel, P., Hasan, M. M., ... & Rahman, M. H. (2023). Angiogenic footprints in diabetic retinopathy: opportunities for drug development. Biotechnology and Genetic Engineering Reviews, 39(1), 118-142.
Boareto, M., Jolly, M. K., Ben-Jacob, E. & Onuchic, J. N. (2015). Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proceedings of the National Academy of Sciences, 112(29), E3836-E3844.
Cao, Y., Linden, P., Farnebo, J., Cao, R., Eriksson, A., Kumar, V., ... & Alitalo, K. (1998). Vascular endothelial growth factor C induces angiogenesis in vivo. Proceedings of the National Academy of Sciences, 95(24), 14389-14394.
Carmeliet, P. & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. nature, 407(6801), 249-257.
Castro, A. P. G., Laity, P., Shariatzadeh, M., Wittkowske, C., Holland, C. & Lacroix, D. (2016). Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate. Journal of Materials Science: Materials in Medicine, 27, 1-9.
Chan, T. R., Stahl, P. J., Li, Y. & Yu, S. M. (2015). Collagen–gelatin mixtures as wound model, and substrates for VEGF-mimetic peptide binding and endothelial cell activation. Acta biomaterialia, 15, 164-172.
Chen, T. T., Luque, A., Lee, S., Anderson, S. M., Segura, T. & Iruela-Arispe, M. L. (2010). Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. The Journal of cell biology, 188(4), 595-609.
Chiang, H., Cheng, Y. C. & Chung, C. A. (2021). Endothelial Cell Morphogenesis and Capillary-like Network Induced by Soluble and Bound VEGF in a Definite Biogel Composed of Collagen and Fibronectin. Applied Sciences, 11(20), 9501.
Cleaver, O. & Krieg, P. A. (2010). Vascular development. In Heart development and regeneration (pp. 487-528). Academic Press.
Crawford, T. N., Alfaro III, D. V., Kerrison, J. B. & Jablon, E. P. (2009). Diabetic retinopathy and angiogenesis. Current diabetes reviews, 5(1), 8-13.
Cross, V. L., Zheng, Y., Choi, N. W., Verbridge, S. S., Sutermaster, B. A., Bonassar, L. J., ... & Stroock, A. D. (2010). Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials, 31(33), 8596-8607.
De Palma, M., Biziato, D. & Petrova, T. V. (2017). Microenvironmental regulation of tumour angiogenesis. Nature Reviews Cancer, 17(8), 457-474.
DeCicco-Skinner, K. L., Henry, G. H., Cataisson, C., Tabib, T., Gwilliam, J. C., Watson, N. J., ... & Wiest, J. S. (2014). Endothelial cell tube formation assay for the in vitro study of angiogenesis. Journal of visualized experiments: JoVE, (91), 51312.
Drake, C. J., Brandt, S. J., Trusk, T. C. & Little, C. D. (1997). TAL1/SCL is expressed in endothelial progenitor cells/angioblasts and defines a dorsal-to-ventral gradient of vasculogenesis. Developmental biology, 192(1), 17-30.
Edgar, L. T., Maas, S. A., Guilkey, J. E. & Weiss, J. A. (2015). A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro. Biomechanics and modeling in mechanobiology, 14, 767-782.
Feng, Z., Xu, Y., Li, X., Chang, K., Dai, Y., Wang, Q. & Hu, G. (2012). Optimum electromagnetism design based on co-simulation of MATLAB and COMSOL. Electromagnetic Analysis and Applications, 1(01), 13-17.
Gabhann, F. M. & Popel, A. S. (2008). Systems biology of vascular endothelial growth factors. Microcirculation, 15(8), 715-738.
Gamba, A., Ambrosi, D., Coniglio, A., De Candia, A., Di Talia, S., Giraudo, E., ... & Bussolino, F. (2003). Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Physical review letters, 90(11), 118101.
Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., ... & Betsholtz, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of cell biology, 161(6), 1163-1177.
Glazier, J. A. & Graner, F. (1993). Simulation of the differential adhesion driven rearrangement of biological cells. Physical Review E, 47(3), 2128.
Goerges, A. L. & Nugent, M. A. (2004). pH regulates vascular endothelial growth factor binding to fibronectin: a mechanism for control of extracellular matrix storage and release. Journal of Biological Chemistry, 279(3), 2307-2315.
Graner, F. & Glazier, J. A. (1992). Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical review letters, 69(13), 2013.
Griffith, L. G. & Naughton, G. (2002). Tissue engineering--current challenges and expanding opportunities. science, 295(5557), 1009-1014.
Grunstein, J., Masbad, J. J., Hickey, R., Giordano, F. & Johnson, R. S. (2000). Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Molecular and cellular biology, 20(19), 7282-7291.
Gudapati, H., Parisi, D., Colby, R. H. & Ozbolat, I. T. (2020). Rheological investigation of collagen, fibrinogen, and thrombin solutions for drop-on-demand 3D bioprinting. Soft Matter, 16(46), 10506-10517.
Haggstrom, M. (2014). Medical gallery of mikael haggstrom 2014. WikiJournal of Medicine, 1(2), 1-53.
Hartigan, J. A. & Hartigan, P. M. (1985). The dip test of unimodality. The annals of Statistics, 70-84.
Hofman, P., Blaauwgeers, H. G., Tolentino, M. J., Adamis, A. P., Nunes Cardozo, B. J., Vrensen, G. F. & Schlingemann, R. O. (2000). VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Current eye research, 21(2), 637-645.
Holmes, K., Roberts, O. L., Thomas, A. M. & Cross, M. J. (2007). Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular signalling, 19(10), 2003-2012.
Ising, E. (1925). Contribution to the theory of ferromagnetism. Z. Phys, 31(1), 253-258.
Jafari-Nivlouei, S., Soltani, M., Carvalho, J., Travasso, R., Salimpour, M. R. & Shirani, E. (2021). Multiscale modeling of tumor growth and angiogenesis: Evaluation of tumor-targeted therapy. PLoS Computational Biology, 17(6), e1009081.
Jiang, X., Wang, J., Deng, X., Xiong, F., Zhang, S., Gong, Z., ... & Xiong, W. (2020). The role of microenvironment in tumor angiogenesis. Journal of Experimental & Clinical Cancer Research, 39, 1-19.
Kazerouni, A. S., Gadde, M., Gardner, A., Hormuth II, D. A., Jarrett, A. M., Johnson, K. E., ... & Yankeelov, T. E. (2020). Integrating Quantitative Assays with Biologically Based Mathematical Modeling for Predictive Oncology. Iscience, 23(12), 101807.
Knapp, D. M., Barocas, V. H., Moon, A. G., Yoo, K., Petzold, L. R. & Tranquillo, R. T. (1997). Rheology of reconstituted type I collagen gel in confined compression. Journal of Rheology, 41(5), 971-993.
Koch, S. & Claesson-Welsh, L. (2012). Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harbor perspectives in medicine, 2(7), a006502.
Kohn-Luque, A., De Back, W., Starrus, J., Mattiotti, A., Deutsch, A., Perez-Pomares, J. M. & Herrero, M. A. (2011). Early embryonic vascular patterning by matrix-mediated paracrine signalling: a mathematical model study. PLoS One, 6(9), e24175.
Kohn-Luque, A., De Back, W., Yamaguchi, Y., Yoshimura, K., Herrero, M. A. & Miura, T. (2013). Dynamics of VEGF matrix-retention in vascular network patterning. Physical biology, 10(6), 066007.
Korhonen, A., Gucciardo, E., Lehti, K. & Loukovaara, S. (2021). Proliferative diabetic retinopathy transcriptomes reveal angiogenesis, anti-angiogenic therapy escape mechanisms, fibrosis and lymphatic involvement. Scientific Reports, 11(1), 18810.
Kubota, Y., Kleinman, H. K., Martin, G. R. & Lawley, T. J. (1988). Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. The Journal of cell biology, 107(4), 1589-1598.
Langer, R. S. & Vacanti, J. P. (1999). Tissue engineering: the challenges ahead. Scientific American, 280(4), 86-89.
Lima, E. A. B. F., Oden, J. T. & Almeida, R. C. (2014). A hybrid ten-species phase-field model of tumor growth. Mathematical Models and Methods in Applied Sciences, 24(13), 2569-2599.
Lopez-Garcia, M. D. C., Beebe, D. J. & Crone, W. C. (2010). Young′s modulus of collagen at slow displacement rates. Bio-medical materials and engineering, 20(6), 361-369.
Lubarsky, B. & Krasnow, M. A. (2003). Tube morphogenesis: making and shaping biological tubes. Cell, 112(1), 19-28.
Manoussaki, D., Lubkin, S. R., Vemon, R. B. & Murray, J. D. (1996). A mechanical model for the formation of vascular networks in vitro. Acta biotheoretica, 44(3), 271-282.
Martino, M. M., Mochizuki, M., Rothenfluh, D. A., Rempel, S. A., Hubbell, J. A. & Barker, T. H. (2009). Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials, 30(6), 1089-1097.
Martino, M. M. & Hubbell, J. A. (2010). The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. The FASEB Journal, 24(12), 4711-4721.
Ma?ka, M., Ulman, V., Delgado-Rodriguez, P., Gomez-de-Mariscal, E., Ne?asova, T., Guerrero Pena, F. A., ... & Ortiz-de-Solorzano, C. (2023). The cell tracking challenge: 10 years of objective benchmarking. Nature Methods, 20(7), 1010-1020.
Mastrullo, V., Cathery, W., Velliou, E., Madeddu, P. & Campagnolo, P. (2020). Angiogenesis in tissue engineering: as nature intended?. Frontiers in bioengineering and biotechnology, 8, 188.
Melkonian, G., Wang, J. L., Chung, J., Munoz, N. & Talbot, P. (2004). CD44 and tenascin play critical roles in growth and vascular development of the chick chorioallantoic membrane and are targets of cigarette smoke. Anatomy and embryology, 208, 109-120.
Merks, R. M., Brodsky, S. V., Goligorksy, M. S., Newman, S. A. & Glazier, J. A. (2006). Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Developmental biology, 289(1), 44-54.
Merks, R. M., Perryn, E. D., Shirinifard, A. & Glazier, J. A. (2008). Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS computational biology, 4(9), e1000163.
Metropolis, N. & Ulam, S. (1949). The monte carlo method. Journal of the American statistical association, 44(247), 335-341.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), 1087-1092.
Metzcar, J., Wang, Y., Heiland, R. & Macklin, P. (2019). A review of cell-based computational modeling in cancer biology. JCO clinical cancer informatics, 2, 1-13.
Miles, J. (2005). R?squared, adjusted R?squared. Encyclopedia of statistics in behavioral science.
Mitsi, M., Hong, Z., Costello, C. E. & Nugent, M. A. (2006). Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. Biochemistry, 45(34), 10319-10328.
Moon, A. G. & Tranquillo, R. T. (1993). Fibroblast-populated collagen microsphere assay of cell traction force: Part 1. Continuum model. AIChE journal, 39(1), 163-177.
Moore, T. M., Brough, G. H., Babal, P., Kelly, J. J., Li, M. & Stevens, T. (1998). Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. American Journal of Physiology-Lung Cellular and Molecular Physiology, 275(3), L574-L582.
Moulisova, V., Gonzalez-Garcia, C., Cantini, M., Rodrigo-Navarro, A., Weaver, J., Costell, M., ... & Salmeron-Sanchez, M. (2017). Engineered microenvironments for synergistic VEGF–Integrin signalling during vascularization. Biomaterials, 126, 61-74.
Murray, J. D. & Oster, G. F. (1984). Cell traction models for generating pattern and form in morphogenesis. Journal of mathematical biology, 19(3), 265-279.
Namy, P., Ohayon, J. & Tracqui, P. (2004). Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. Journal of Theoretical Biology, 227(1), 103-120.
Nashimoto, Y., Hayashi, T., Kunita, I., Nakamasu, A., Torisawa, Y. S., Nakayama, M., ... & Yokokawa, R. (2017). Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integrative Biology, 9(6), 506-518.
Nowak-Sliwinska, P., Alitalo, K., Allen, E., Anisimov, A., Aplin, A. C., Auerbach, R., ... & Griffioen, A. W. (2018). Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 21, 425-532.
Palachanis, D., Szabo, A. & Merks, R. M. (2015). Particle-based simulation of ellipse-shaped particle aggregation as a model for vascular network formation. Computational Particle Mechanics, 2, 371-379.
Patterson, J., Martino, M. M. & Hubbell, J. A. (2010). Biomimetic materials in tissue engineering. Materials today, 13(1-2), 14-22.
Phillips, C. M., Lima, E. A., Woodall, R. T., Brock, A. & Yankeelov, T. E. (2020). A hybrid model of tumor growth and angiogenesis: In silico experiments. Plos one, 15(4), e0231137.
Plate, K. H., Breier, G., Weich, H. A. & Risau, W. (1992). Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature, 359(6398), 845-848.
Potts, R. B. (1952). Some generalized order-disorder transformations. In Mathematical proceedings of the cambridge philosophical society (Vol. 48, No. 1, pp. 106-109). Cambridge University Press.
Rezakazemi, M., Shirazian, S. & Ashrafizadeh, S. N. (2012). Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination, 285, 383-392.
Rudiger, D., Kick, K., Goychuk, A., Vollmar, A. M., Frey, E. & Zahler, S. (2020). Cell-based strain remodeling of a nonfibrous matrix as an organizing principle for vasculogenesis. Cell Reports, 32(6).
Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., ... & Shima, D. T. (2002). Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes & development, 16(20), 2684-2698.
Sawicka, K. M., Seeliger, M., Musaev, T., Macri, L. K. & Clark, R. A. (2015). Fibronectin interaction and enhancement of growth factors: importance for wound healing. Advances in wound care, 4(8), 469-478.
Scianna, M. & Munaron, L. (2011). Multiscale model of tumor-derivedcapillary-like network formation. Networks and Heterogeneous Media, 6(4), 597-624.
Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L. & Bussolino, F. (2003). Modeling the early stages of vascular network assembly. The EMBO journal, 22(8), 1771-1779.
Shiu, Y. T., Li, S., Marganski, W. A., Usami, S., Schwartz, M. A., Wang, Y. L., ... & Chien, S. (2004). Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophysical journal, 86(4), 2558-2565.
Silva, A. K. A., Richard, C., Bessodes, M., Scherman, D. & Merten, O. W. (2008). Growth factor delivery approaches in hydrogels. Biomacromolecules, 10(1), 9-18.
Sison, K., Eremina, V., Baelde, H., Min, W., Hirashima, M., Fantus, I. G. & Quaggin, S. E. (2010). Glomerular structure and function require paracrine, not autocrine, VEGF–VEGFR-2 signaling. Journal of the American Society of Nephrology, 21(10), 1691-1701.
Stamati, K., Priestley, J. V., Mudera, V., & Cheema, U. (2014). Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake. Experimental cell research, 327(1), 68-77.
Stepanova, D., Byrne, H. M., Maini, P. K. & Alarcon, T. (2021). A multiscale model of complex endothelial cell dynamics in early angiogenesis. PLoS computational biology, 17(1), e1008055.
Stott, E. L., Britton, N. F., Glazier, J. A. & Zajac, M. (1999). Stochastic simulation of benign avascular tumour growth using the Potts model. Mathematical and Computer Modelling, 30(5-6), 183-198.
Subramanian, A., Zakeri, P., Mousa, M., Alnaqbi, H., Alshamsi, F. Y., Bettoni, L., ... & Carmeliet, P. (2022). Angiogenesis goes computational–The future way forward to discover new angiogenic targets?. Computational and Structural Biotechnology Journal, 20, 5235-5255.
Tranqui, L. & Tracqui, P. (2000). Mechanical signalling and angiogenesis. The integration of cell–extracellular matrix couplings. Comptes Rendus de l′Academie des Sciences-Series III-Sciences de la Vie, 323(1), 31-47.
Turner, S. & Sherratt, J. A. (2002). Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. Journal of theoretical biology, 216(1), 85-100.
Vailhe, B., Ronot, X., Tracqui, P., Usson, Y. & Tranqui, L. (1997). In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to α v β 3 integrin localization. In Vitro Cellular & Developmental Biology-Animal, 33(10), 763-773.
Vailhe, B., Vittet, D. & Feige, J. J. (2001). In vitro models of vasculogenesis and angiogenesis. Laboratory investigation, 81(4), 439-452.
Vega, R., Carretero, M., Travasso, R. D. & Bonilla, L. L. (2020). Notch signaling and taxis mechanisms regulate early stage angiogenesis: a mathematical and computational model. PLoS computational biology, 16(1), e1006919.
Vempati, P., Popel, A. S., & Mac Gabhann, F. (2014). Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine & growth factor reviews, 25(1), 1-19.
Venkatraman, L., Regan, E. R., & Bentley, K. (2016). Time to decide? Dynamical analysis predicts partial tip/stalk patterning states arise during angiogenesis. PloS one, 11(11), e0166489.
Vergroesen, T. M., Vermeulen, V. & Merks, R. M. (2024). Falsifying computational models of angiogenesis through quantitative comparison with in vitro models. bioRxiv, 2024-08.
Verhulst, P. F. (1838). Notice sur la loi que la population suit dans son accroissement. Correspondence mathematique et physique, 10, 113-129.
Vernon, R. B., Angello, J. C., Iruela-Arispe, L., Lane, T. F. & Sage, E. H. (1992). Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Laboratory investigation, 66(5), 536-547.
Vernon, R. B., Lara, S. L., Drake, C. J., Iruela-Arispe, M. L., Angello, J. C., Little, C. D., ... & Sage, E. H. (1995). Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cellular & Developmental Biology-Animal, 31(2), 120-131.
Vilanova, G., Colominas, I. & Gomez, H. (2017). A mathematical model of tumour angiogenesis: growth, regression and regrowth. Journal of The Royal Society Interface, 14(126), 20160918.
Volin, M. V., Joseph, L., Shockley, M. S. & Davies, P. F. (1998). Chemokine receptor CXCR4 expression in endothelium. Biochemical and biophysical research communications, 242(1), 46-53.
Weaver, J. D., Headen, D. M., Aquart, J., Johnson, C. T., Shea, L. D., Shirwan, H. & Garcia, A. J. (2017). Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Science advances, 3(6), e1700184.
Wijelath, E. S., Rahman, S., Namekata, M., Murray, J., Nishimura, T., Mostafavi-Pour, Z., ... & Sobel, M. (2006). Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circulation research, 99(8), 853-860.
Xu, K. & Cleaver, O. (2011). Tubulogenesis during blood vessel formation. In Seminars in cell & developmental biology (Vol. 22, No. 9, pp. 993-1004). Academic Press.
Yamaguchi, T. P., Dumont, D. J., Conlon, R. A., Breitman, M. L. & Rossant, J. (1993). flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development, 118(2), 489-498.
Yousefi, A. M., James, P. F., Akbarzadeh, R., Subramanian, A., Flavin, C. & Oudadesse, H. (2016). Prospect of stem cells in bone tissue engineering: a review. Stem cells international, 2016(1), 6180487.
Zhang, X., Battig, M. R., Chen, N., Gaddes, E. R., Duncan, K. L. & Wang, Y. (2016). Chimeric aptamer–gelatin hydrogels as an extracellular matrix mimic for loading cells and growth factors. Biomacromolecules, 17(3), 778-787.
Zhang, Y., Wang, H., Oliveira, R. H. M., Zhao, C. & Popel, A. S. (2022). Systems biology of angiogenesis signaling: Computational models and omics. WIREs mechanisms of disease, 14(4), e1550.
吳思穎(2012)。體外培養內皮細胞形成毛細血管結構前期之穩定性分析及模擬。國立中央大學碩士論文。
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2024-12-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明