參考文獻 |
Apte, R. S., Chen, D. S. & Ferrara, N. (2019). VEGF in signaling and disease: beyond discovery and development. Cell, 176(6), 1248-1264.
Artavanis-Tsakonas, S., Rand, M. D. & Lake, R. J. (1999). Notch signaling: cell fate control and signal integration in development. Science, 284(5415), 770-776.
Ausprunk, D. H. & Folkman, J. (1977). Migration and proliferation of endothelial cells in preformed and newly formed blood vessels during tumor angiogenesis. Microvascular research, 14(1), 53-65.
Banerjee, A., Chitnis, U. B., Jadhav, S. L., Bhawalkar, J. S. & Chaudhury, S. (2009). Hypothesis testing, type I and type II errors. Industrial psychiatry journal, 18(2), 127-131.
Belair, D. G., Miller, M. J., Wang, S., Darjatmoko, S. R., Binder, B. Y., Sheibani, N. & Murphy, W. L. (2016). Differential regulation of angiogenesis using degradable VEGF-binding microspheres. Biomaterials, 93, 27-37.
Bhatia, S., Babbar, R., Zehravi, M., Singh, B., Chandel, P., Hasan, M. M., ... & Rahman, M. H. (2023). Angiogenic footprints in diabetic retinopathy: opportunities for drug development. Biotechnology and Genetic Engineering Reviews, 39(1), 118-142.
Boareto, M., Jolly, M. K., Ben-Jacob, E. & Onuchic, J. N. (2015). Jagged mediates differences in normal and tumor angiogenesis by affecting tip-stalk fate decision. Proceedings of the National Academy of Sciences, 112(29), E3836-E3844.
Cao, Y., Linden, P., Farnebo, J., Cao, R., Eriksson, A., Kumar, V., ... & Alitalo, K. (1998). Vascular endothelial growth factor C induces angiogenesis in vivo. Proceedings of the National Academy of Sciences, 95(24), 14389-14394.
Carmeliet, P. & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. nature, 407(6801), 249-257.
Castro, A. P. G., Laity, P., Shariatzadeh, M., Wittkowske, C., Holland, C. & Lacroix, D. (2016). Combined numerical and experimental biomechanical characterization of soft collagen hydrogel substrate. Journal of Materials Science: Materials in Medicine, 27, 1-9.
Chan, T. R., Stahl, P. J., Li, Y. & Yu, S. M. (2015). Collagen–gelatin mixtures as wound model, and substrates for VEGF-mimetic peptide binding and endothelial cell activation. Acta biomaterialia, 15, 164-172.
Chen, T. T., Luque, A., Lee, S., Anderson, S. M., Segura, T. & Iruela-Arispe, M. L. (2010). Anchorage of VEGF to the extracellular matrix conveys differential signaling responses to endothelial cells. The Journal of cell biology, 188(4), 595-609.
Chiang, H., Cheng, Y. C. & Chung, C. A. (2021). Endothelial Cell Morphogenesis and Capillary-like Network Induced by Soluble and Bound VEGF in a Definite Biogel Composed of Collagen and Fibronectin. Applied Sciences, 11(20), 9501.
Cleaver, O. & Krieg, P. A. (2010). Vascular development. In Heart development and regeneration (pp. 487-528). Academic Press.
Crawford, T. N., Alfaro III, D. V., Kerrison, J. B. & Jablon, E. P. (2009). Diabetic retinopathy and angiogenesis. Current diabetes reviews, 5(1), 8-13.
Cross, V. L., Zheng, Y., Choi, N. W., Verbridge, S. S., Sutermaster, B. A., Bonassar, L. J., ... & Stroock, A. D. (2010). Dense type I collagen matrices that support cellular remodeling and microfabrication for studies of tumor angiogenesis and vasculogenesis in vitro. Biomaterials, 31(33), 8596-8607.
De Palma, M., Biziato, D. & Petrova, T. V. (2017). Microenvironmental regulation of tumour angiogenesis. Nature Reviews Cancer, 17(8), 457-474.
DeCicco-Skinner, K. L., Henry, G. H., Cataisson, C., Tabib, T., Gwilliam, J. C., Watson, N. J., ... & Wiest, J. S. (2014). Endothelial cell tube formation assay for the in vitro study of angiogenesis. Journal of visualized experiments: JoVE, (91), 51312.
Drake, C. J., Brandt, S. J., Trusk, T. C. & Little, C. D. (1997). TAL1/SCL is expressed in endothelial progenitor cells/angioblasts and defines a dorsal-to-ventral gradient of vasculogenesis. Developmental biology, 192(1), 17-30.
Edgar, L. T., Maas, S. A., Guilkey, J. E. & Weiss, J. A. (2015). A coupled model of neovessel growth and matrix mechanics describes and predicts angiogenesis in vitro. Biomechanics and modeling in mechanobiology, 14, 767-782.
Feng, Z., Xu, Y., Li, X., Chang, K., Dai, Y., Wang, Q. & Hu, G. (2012). Optimum electromagnetism design based on co-simulation of MATLAB and COMSOL. Electromagnetic Analysis and Applications, 1(01), 13-17.
Gabhann, F. M. & Popel, A. S. (2008). Systems biology of vascular endothelial growth factors. Microcirculation, 15(8), 715-738.
Gamba, A., Ambrosi, D., Coniglio, A., De Candia, A., Di Talia, S., Giraudo, E., ... & Bussolino, F. (2003). Percolation, morphogenesis, and Burgers dynamics in blood vessels formation. Physical review letters, 90(11), 118101.
Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., ... & Betsholtz, C. (2003). VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. The Journal of cell biology, 161(6), 1163-1177.
Glazier, J. A. & Graner, F. (1993). Simulation of the differential adhesion driven rearrangement of biological cells. Physical Review E, 47(3), 2128.
Goerges, A. L. & Nugent, M. A. (2004). pH regulates vascular endothelial growth factor binding to fibronectin: a mechanism for control of extracellular matrix storage and release. Journal of Biological Chemistry, 279(3), 2307-2315.
Graner, F. & Glazier, J. A. (1992). Simulation of biological cell sorting using a two-dimensional extended Potts model. Physical review letters, 69(13), 2013.
Griffith, L. G. & Naughton, G. (2002). Tissue engineering--current challenges and expanding opportunities. science, 295(5557), 1009-1014.
Grunstein, J., Masbad, J. J., Hickey, R., Giordano, F. & Johnson, R. S. (2000). Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Molecular and cellular biology, 20(19), 7282-7291.
Gudapati, H., Parisi, D., Colby, R. H. & Ozbolat, I. T. (2020). Rheological investigation of collagen, fibrinogen, and thrombin solutions for drop-on-demand 3D bioprinting. Soft Matter, 16(46), 10506-10517.
Haggstrom, M. (2014). Medical gallery of mikael haggstrom 2014. WikiJournal of Medicine, 1(2), 1-53.
Hartigan, J. A. & Hartigan, P. M. (1985). The dip test of unimodality. The annals of Statistics, 70-84.
Hofman, P., Blaauwgeers, H. G., Tolentino, M. J., Adamis, A. P., Nunes Cardozo, B. J., Vrensen, G. F. & Schlingemann, R. O. (2000). VEGF-A induced hyperpermeability of blood-retinal barrier endothelium in vivo is predominantly associated with pinocytotic vesicular transport and not with formation of fenestrations. Current eye research, 21(2), 637-645.
Holmes, K., Roberts, O. L., Thomas, A. M. & Cross, M. J. (2007). Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular signalling, 19(10), 2003-2012.
Ising, E. (1925). Contribution to the theory of ferromagnetism. Z. Phys, 31(1), 253-258.
Jafari-Nivlouei, S., Soltani, M., Carvalho, J., Travasso, R., Salimpour, M. R. & Shirani, E. (2021). Multiscale modeling of tumor growth and angiogenesis: Evaluation of tumor-targeted therapy. PLoS Computational Biology, 17(6), e1009081.
Jiang, X., Wang, J., Deng, X., Xiong, F., Zhang, S., Gong, Z., ... & Xiong, W. (2020). The role of microenvironment in tumor angiogenesis. Journal of Experimental & Clinical Cancer Research, 39, 1-19.
Kazerouni, A. S., Gadde, M., Gardner, A., Hormuth II, D. A., Jarrett, A. M., Johnson, K. E., ... & Yankeelov, T. E. (2020). Integrating Quantitative Assays with Biologically Based Mathematical Modeling for Predictive Oncology. Iscience, 23(12), 101807.
Knapp, D. M., Barocas, V. H., Moon, A. G., Yoo, K., Petzold, L. R. & Tranquillo, R. T. (1997). Rheology of reconstituted type I collagen gel in confined compression. Journal of Rheology, 41(5), 971-993.
Koch, S. & Claesson-Welsh, L. (2012). Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harbor perspectives in medicine, 2(7), a006502.
Kohn-Luque, A., De Back, W., Starrus, J., Mattiotti, A., Deutsch, A., Perez-Pomares, J. M. & Herrero, M. A. (2011). Early embryonic vascular patterning by matrix-mediated paracrine signalling: a mathematical model study. PLoS One, 6(9), e24175.
Kohn-Luque, A., De Back, W., Yamaguchi, Y., Yoshimura, K., Herrero, M. A. & Miura, T. (2013). Dynamics of VEGF matrix-retention in vascular network patterning. Physical biology, 10(6), 066007.
Korhonen, A., Gucciardo, E., Lehti, K. & Loukovaara, S. (2021). Proliferative diabetic retinopathy transcriptomes reveal angiogenesis, anti-angiogenic therapy escape mechanisms, fibrosis and lymphatic involvement. Scientific Reports, 11(1), 18810.
Kubota, Y., Kleinman, H. K., Martin, G. R. & Lawley, T. J. (1988). Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. The Journal of cell biology, 107(4), 1589-1598.
Langer, R. S. & Vacanti, J. P. (1999). Tissue engineering: the challenges ahead. Scientific American, 280(4), 86-89.
Lima, E. A. B. F., Oden, J. T. & Almeida, R. C. (2014). A hybrid ten-species phase-field model of tumor growth. Mathematical Models and Methods in Applied Sciences, 24(13), 2569-2599.
Lopez-Garcia, M. D. C., Beebe, D. J. & Crone, W. C. (2010). Young′s modulus of collagen at slow displacement rates. Bio-medical materials and engineering, 20(6), 361-369.
Lubarsky, B. & Krasnow, M. A. (2003). Tube morphogenesis: making and shaping biological tubes. Cell, 112(1), 19-28.
Manoussaki, D., Lubkin, S. R., Vemon, R. B. & Murray, J. D. (1996). A mechanical model for the formation of vascular networks in vitro. Acta biotheoretica, 44(3), 271-282.
Martino, M. M., Mochizuki, M., Rothenfluh, D. A., Rempel, S. A., Hubbell, J. A. & Barker, T. H. (2009). Controlling integrin specificity and stem cell differentiation in 2D and 3D environments through regulation of fibronectin domain stability. Biomaterials, 30(6), 1089-1097.
Martino, M. M. & Hubbell, J. A. (2010). The 12th–14th type III repeats of fibronectin function as a highly promiscuous growth factor-binding domain. The FASEB Journal, 24(12), 4711-4721.
Ma?ka, M., Ulman, V., Delgado-Rodriguez, P., Gomez-de-Mariscal, E., Ne?asova, T., Guerrero Pena, F. A., ... & Ortiz-de-Solorzano, C. (2023). The cell tracking challenge: 10 years of objective benchmarking. Nature Methods, 20(7), 1010-1020.
Mastrullo, V., Cathery, W., Velliou, E., Madeddu, P. & Campagnolo, P. (2020). Angiogenesis in tissue engineering: as nature intended?. Frontiers in bioengineering and biotechnology, 8, 188.
Melkonian, G., Wang, J. L., Chung, J., Munoz, N. & Talbot, P. (2004). CD44 and tenascin play critical roles in growth and vascular development of the chick chorioallantoic membrane and are targets of cigarette smoke. Anatomy and embryology, 208, 109-120.
Merks, R. M., Brodsky, S. V., Goligorksy, M. S., Newman, S. A. & Glazier, J. A. (2006). Cell elongation is key to in silico replication of in vitro vasculogenesis and subsequent remodeling. Developmental biology, 289(1), 44-54.
Merks, R. M., Perryn, E. D., Shirinifard, A. & Glazier, J. A. (2008). Contact-inhibited chemotaxis in de novo and sprouting blood-vessel growth. PLoS computational biology, 4(9), e1000163.
Metropolis, N. & Ulam, S. (1949). The monte carlo method. Journal of the American statistical association, 44(247), 335-341.
Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H. & Teller, E. (1953). Equation of state calculations by fast computing machines. The journal of chemical physics, 21(6), 1087-1092.
Metzcar, J., Wang, Y., Heiland, R. & Macklin, P. (2019). A review of cell-based computational modeling in cancer biology. JCO clinical cancer informatics, 2, 1-13.
Miles, J. (2005). R?squared, adjusted R?squared. Encyclopedia of statistics in behavioral science.
Mitsi, M., Hong, Z., Costello, C. E. & Nugent, M. A. (2006). Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. Biochemistry, 45(34), 10319-10328.
Moon, A. G. & Tranquillo, R. T. (1993). Fibroblast-populated collagen microsphere assay of cell traction force: Part 1. Continuum model. AIChE journal, 39(1), 163-177.
Moore, T. M., Brough, G. H., Babal, P., Kelly, J. J., Li, M. & Stevens, T. (1998). Store-operated calcium entry promotes shape change in pulmonary endothelial cells expressing Trp1. American Journal of Physiology-Lung Cellular and Molecular Physiology, 275(3), L574-L582.
Moulisova, V., Gonzalez-Garcia, C., Cantini, M., Rodrigo-Navarro, A., Weaver, J., Costell, M., ... & Salmeron-Sanchez, M. (2017). Engineered microenvironments for synergistic VEGF–Integrin signalling during vascularization. Biomaterials, 126, 61-74.
Murray, J. D. & Oster, G. F. (1984). Cell traction models for generating pattern and form in morphogenesis. Journal of mathematical biology, 19(3), 265-279.
Namy, P., Ohayon, J. & Tracqui, P. (2004). Critical conditions for pattern formation and in vitro tubulogenesis driven by cellular traction fields. Journal of Theoretical Biology, 227(1), 103-120.
Nashimoto, Y., Hayashi, T., Kunita, I., Nakamasu, A., Torisawa, Y. S., Nakayama, M., ... & Yokokawa, R. (2017). Integrating perfusable vascular networks with a three-dimensional tissue in a microfluidic device. Integrative Biology, 9(6), 506-518.
Nowak-Sliwinska, P., Alitalo, K., Allen, E., Anisimov, A., Aplin, A. C., Auerbach, R., ... & Griffioen, A. W. (2018). Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis, 21, 425-532.
Palachanis, D., Szabo, A. & Merks, R. M. (2015). Particle-based simulation of ellipse-shaped particle aggregation as a model for vascular network formation. Computational Particle Mechanics, 2, 371-379.
Patterson, J., Martino, M. M. & Hubbell, J. A. (2010). Biomimetic materials in tissue engineering. Materials today, 13(1-2), 14-22.
Phillips, C. M., Lima, E. A., Woodall, R. T., Brock, A. & Yankeelov, T. E. (2020). A hybrid model of tumor growth and angiogenesis: In silico experiments. Plos one, 15(4), e0231137.
Plate, K. H., Breier, G., Weich, H. A. & Risau, W. (1992). Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature, 359(6398), 845-848.
Potts, R. B. (1952). Some generalized order-disorder transformations. In Mathematical proceedings of the cambridge philosophical society (Vol. 48, No. 1, pp. 106-109). Cambridge University Press.
Rezakazemi, M., Shirazian, S. & Ashrafizadeh, S. N. (2012). Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination, 285, 383-392.
Rudiger, D., Kick, K., Goychuk, A., Vollmar, A. M., Frey, E. & Zahler, S. (2020). Cell-based strain remodeling of a nonfibrous matrix as an organizing principle for vasculogenesis. Cell Reports, 32(6).
Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., ... & Shima, D. T. (2002). Spatially restricted patterning cues provided by heparin-binding VEGF-A control blood vessel branching morphogenesis. Genes & development, 16(20), 2684-2698.
Sawicka, K. M., Seeliger, M., Musaev, T., Macri, L. K. & Clark, R. A. (2015). Fibronectin interaction and enhancement of growth factors: importance for wound healing. Advances in wound care, 4(8), 469-478.
Scianna, M. & Munaron, L. (2011). Multiscale model of tumor-derivedcapillary-like network formation. Networks and Heterogeneous Media, 6(4), 597-624.
Serini, G., Ambrosi, D., Giraudo, E., Gamba, A., Preziosi, L. & Bussolino, F. (2003). Modeling the early stages of vascular network assembly. The EMBO journal, 22(8), 1771-1779.
Shiu, Y. T., Li, S., Marganski, W. A., Usami, S., Schwartz, M. A., Wang, Y. L., ... & Chien, S. (2004). Rho mediates the shear-enhancement of endothelial cell migration and traction force generation. Biophysical journal, 86(4), 2558-2565.
Silva, A. K. A., Richard, C., Bessodes, M., Scherman, D. & Merten, O. W. (2008). Growth factor delivery approaches in hydrogels. Biomacromolecules, 10(1), 9-18.
Sison, K., Eremina, V., Baelde, H., Min, W., Hirashima, M., Fantus, I. G. & Quaggin, S. E. (2010). Glomerular structure and function require paracrine, not autocrine, VEGF–VEGFR-2 signaling. Journal of the American Society of Nephrology, 21(10), 1691-1701.
Stamati, K., Priestley, J. V., Mudera, V., & Cheema, U. (2014). Laminin promotes vascular network formation in 3D in vitro collagen scaffolds by regulating VEGF uptake. Experimental cell research, 327(1), 68-77.
Stepanova, D., Byrne, H. M., Maini, P. K. & Alarcon, T. (2021). A multiscale model of complex endothelial cell dynamics in early angiogenesis. PLoS computational biology, 17(1), e1008055.
Stott, E. L., Britton, N. F., Glazier, J. A. & Zajac, M. (1999). Stochastic simulation of benign avascular tumour growth using the Potts model. Mathematical and Computer Modelling, 30(5-6), 183-198.
Subramanian, A., Zakeri, P., Mousa, M., Alnaqbi, H., Alshamsi, F. Y., Bettoni, L., ... & Carmeliet, P. (2022). Angiogenesis goes computational–The future way forward to discover new angiogenic targets?. Computational and Structural Biotechnology Journal, 20, 5235-5255.
Tranqui, L. & Tracqui, P. (2000). Mechanical signalling and angiogenesis. The integration of cell–extracellular matrix couplings. Comptes Rendus de l′Academie des Sciences-Series III-Sciences de la Vie, 323(1), 31-47.
Turner, S. & Sherratt, J. A. (2002). Intercellular adhesion and cancer invasion: a discrete simulation using the extended Potts model. Journal of theoretical biology, 216(1), 85-100.
Vailhe, B., Ronot, X., Tracqui, P., Usson, Y. & Tranqui, L. (1997). In vitro angiogenesis is modulated by the mechanical properties of fibrin gels and is related to α v β 3 integrin localization. In Vitro Cellular & Developmental Biology-Animal, 33(10), 763-773.
Vailhe, B., Vittet, D. & Feige, J. J. (2001). In vitro models of vasculogenesis and angiogenesis. Laboratory investigation, 81(4), 439-452.
Vega, R., Carretero, M., Travasso, R. D. & Bonilla, L. L. (2020). Notch signaling and taxis mechanisms regulate early stage angiogenesis: a mathematical and computational model. PLoS computational biology, 16(1), e1006919.
Vempati, P., Popel, A. S., & Mac Gabhann, F. (2014). Extracellular regulation of VEGF: isoforms, proteolysis, and vascular patterning. Cytokine & growth factor reviews, 25(1), 1-19.
Venkatraman, L., Regan, E. R., & Bentley, K. (2016). Time to decide? Dynamical analysis predicts partial tip/stalk patterning states arise during angiogenesis. PloS one, 11(11), e0166489.
Vergroesen, T. M., Vermeulen, V. & Merks, R. M. (2024). Falsifying computational models of angiogenesis through quantitative comparison with in vitro models. bioRxiv, 2024-08.
Verhulst, P. F. (1838). Notice sur la loi que la population suit dans son accroissement. Correspondence mathematique et physique, 10, 113-129.
Vernon, R. B., Angello, J. C., Iruela-Arispe, L., Lane, T. F. & Sage, E. H. (1992). Reorganization of basement membrane matrices by cellular traction promotes the formation of cellular networks in vitro. Laboratory investigation, 66(5), 536-547.
Vernon, R. B., Lara, S. L., Drake, C. J., Iruela-Arispe, M. L., Angello, J. C., Little, C. D., ... & Sage, E. H. (1995). Organized type I collagen influences endothelial patterns during “spontaneous angiogenesis in vitro”: planar cultures as models of vascular development. In Vitro Cellular & Developmental Biology-Animal, 31(2), 120-131.
Vilanova, G., Colominas, I. & Gomez, H. (2017). A mathematical model of tumour angiogenesis: growth, regression and regrowth. Journal of The Royal Society Interface, 14(126), 20160918.
Volin, M. V., Joseph, L., Shockley, M. S. & Davies, P. F. (1998). Chemokine receptor CXCR4 expression in endothelium. Biochemical and biophysical research communications, 242(1), 46-53.
Weaver, J. D., Headen, D. M., Aquart, J., Johnson, C. T., Shea, L. D., Shirwan, H. & Garcia, A. J. (2017). Vasculogenic hydrogel enhances islet survival, engraftment, and function in leading extrahepatic sites. Science advances, 3(6), e1700184.
Wijelath, E. S., Rahman, S., Namekata, M., Murray, J., Nishimura, T., Mostafavi-Pour, Z., ... & Sobel, M. (2006). Heparin-II domain of fibronectin is a vascular endothelial growth factor-binding domain: enhancement of VEGF biological activity by a singular growth factor/matrix protein synergism. Circulation research, 99(8), 853-860.
Xu, K. & Cleaver, O. (2011). Tubulogenesis during blood vessel formation. In Seminars in cell & developmental biology (Vol. 22, No. 9, pp. 993-1004). Academic Press.
Yamaguchi, T. P., Dumont, D. J., Conlon, R. A., Breitman, M. L. & Rossant, J. (1993). flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. Development, 118(2), 489-498.
Yousefi, A. M., James, P. F., Akbarzadeh, R., Subramanian, A., Flavin, C. & Oudadesse, H. (2016). Prospect of stem cells in bone tissue engineering: a review. Stem cells international, 2016(1), 6180487.
Zhang, X., Battig, M. R., Chen, N., Gaddes, E. R., Duncan, K. L. & Wang, Y. (2016). Chimeric aptamer–gelatin hydrogels as an extracellular matrix mimic for loading cells and growth factors. Biomacromolecules, 17(3), 778-787.
Zhang, Y., Wang, H., Oliveira, R. H. M., Zhao, C. & Popel, A. S. (2022). Systems biology of angiogenesis signaling: Computational models and omics. WIREs mechanisms of disease, 14(4), e1550.
吳思穎(2012)。體外培養內皮細胞形成毛細血管結構前期之穩定性分析及模擬。國立中央大學碩士論文。 |