博碩士論文 111323079 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:95 、訪客IP:3.144.252.203
姓名 陳秉沅(Bing-Yuan Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 膠體固著液滴於疏水基板上的蒸發模擬
(Simulation of Evaporation of Colloidal Sessile Droplets on the Hydrophobic Substrates)
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-18以後開放)
摘要(中) 液滴蒸發的現象無所不在,其應用範圍亦相當廣泛,如薄膜沉積、DNA晶片、噴墨列印、晶體陣列、噴霧冷卻等領域。固著液滴的蒸發過程為暫態系統,其行為受基板濕潤性、液滴或基板溫度、溶質濃度等條件影響,於液滴內部產生多變的流動模式。
本文以數值計算的方式,模擬膠體固著液滴的蒸發過程,透過改變初始液滴溫度的方式,探討溫度與流場分佈隨時間的演化,提供非揮發性成分的液滴的流動現象參考。結果顯示,初始蒸發時間於液氣介面附近因蒸發通量不均,產生數處溫度極值造成多個渦流的產生,隨後逐漸整合成兩個熱馬蘭根尼渦流。當液滴初始溫度高於常溫時,液滴內出現兩個流動階段:週期性流動與過渡期流動。週期演變為,液滴內部出現兩個流向相反的馬蘭根尼渦流競爭,隨後逐漸由下方沿液氣介面流向頂部的馬蘭根尼流主導整個液滴流動,而後再次分裂成兩個馬蘭根尼渦流開始下一輪的循環。單次週期於早、中、晚期所需時間隨液滴初始溫度升高而縮短,週期次數也越多,從週期行為進入過渡期的時間也越晚。蒸發通量隨液滴初始溫度升高,不均勻分佈越強,隨液滴溫度下降,不均勻性逐漸減弱。過渡期間,溫度逐漸接近常溫,週期性流動模式逐漸消失,形成上下雙熱馬蘭根尼渦流持續存在於液滴內競爭,此競爭最終分裂為三個渦流,由位於中間的渦流逐漸主導,將液滴底部流體沿液氣介面逐漸帶往頂部,最終形成常溫液滴流動模式,結束過渡期流動。此時期的結束時間隨液滴初始溫度升高而延後。PS濃度場於升溫液滴中因蒸發通量不均造成多個局部濃度極值,多個渦流將部分PS往液滴內移動,卻受限於液氣介面附近循環;隨後液滴進入週期性流動,PS濃度聚集於頂部,並受限於下方熱馬蘭根尼渦流的週期性流動。進入過渡期後,PS濃度產生兩處較高區分布於兩個渦流中,持續至最終轉變為常溫液滴流動模式的濃度場分布。
摘要(英) The phenomenon of droplet evaporation is ubiquitous and has wide-ranging applications, such as thin film deposition, DNA chips, inkjet printing, crystal arrays, and spray cooling. The evaporation process of sessile droplets is a transient system, and its behavior is influenced by factors such as the substrate wettability, temperature difference due to droplet or substrate, solute concentration, etc. These factors create varied flow patterns inside the droplets.
This study built numerical model to simulate the evaporation process of colloidal sessile droplets by varying the initial droplet temperature, the evolution of temperature and flow field distribution over time are investigated, providing a reference for the flow pattern of non-volatile component droplets. The results show that during the initial evaporation time, multiple vortices are generated near the liquid-gas interface due to non-uniform evaporation flux, which gradually integrate into a pair of thermal Marangoni vortices. When the initial droplet temperature is above ambient temperature, two flow periods are observed: periodic flow field and transition flow field. The periodic behavior involves the competition between the upper and lower thermal Marangoni vortices, eventually leading to a dominant upward Marangoni flow along the liquid-gas interface, which then splits into a new cycle of vortices. The cycle time shortens as the initial temperature of the droplet increases, and the greater the number of cycles, the later the transition from periodic behavior to the transition period. The evaporation flux becomes more uneven as the initial temperature rises and gradually becomes more uniform as the droplet temperature drops. During the transition period, the droplet temperature approaches to the ambient, and the periodic flow fades, the upper and lower Marangoni vortices compete continuously in the droplet. Eventually, these vortices split into three, with the central vortex gradually dominating and carrying the fluid from the bottom to the top along the liquid-gas interface, forming a steady ambient temperature flow pattern and concluding the transition period. The end of this period is delayed as the initial droplet temperature increases. The PS concentration field in the heated droplets causes multiple local concentration extremes due to uneven evaporation flux. Multiple vortices move part of the PS into the droplets, but are limited by circulation near the liquid-gas interface; then the droplets enter a periodic flow, the PS concentration accumulates at the apex and is restricted by the periodic flow of the thermal Marangoni vortices below. After entering the transition period, the PS concentration produces two higher areas distributed in the two vortices, which last until it finally transforms into a concentration field distribution of ambient temperature flow pattern.
關鍵字(中) ★ 固著液滴
★ 液滴蒸發
★ 馬蘭根尼流
★ 加熱液滴
關鍵字(英) ★ Sessile droplets
★ droplet evaporation
★ Marangoni flow
★ heated droplets
論文目次 誌謝 i
摘要 ii
Abstract iv
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1前言 1
1.2文獻回顧 2
1.2.1固著液滴蒸發模式 2
1.2.2毛細流(Capillary flow) 3
1.2.3馬蘭根尼流(Marangoni flow) 3
1.2.4瑞利流(Rayleigh flow) 4
1.2.5基板濕潤性(Wettability) 5
1.2.6數值模擬(Numerical simulation) 5
1.3研究動機 7
1.4研究目的 8
第二章 研究方法 10
2.1物理假設 10
2.2物理模型 10
2.3統御方程式 13
2.4初始條件 17
2.5邊界條件 18
2.6參數表 22
2.7數值方法 25
2.8網格獨立性測試 28
第三章 結果與討論 31
3.1模型驗證 31
3.2無因次參數 32
3.3常溫液滴隨時間的演化 35
3.4升溫液滴隨的影響 42
3.4.1週期性流動 42
3.4.2過渡期流動 64
3.5液滴濃度場的影響 84
3.5.1液滴濃度場與速度場隨溫度的演化 84
3.5.2粒子熱泳效應的影響 86
3.6基板溫度隨時間的演化 121
第四章 結論與未來展望 150
4.1結論 150
4.2未來展望 152
參考文獻 154
附錄 160
附錄A 160
附錄B 162
參考文獻 Abegunde, O. O., Akinlabi, E. T., Oladijo, O. P., Akinlabi, S., & Ude, A. U. (2019). Overview of thin film deposition techniques. AIMS Materials Science, 6(2), 174-199.
Akdag, O., Akkus, Y., Cetin, B., & Dursunkaya, Z. (2021). Interplay of transport mechanisms during the evaporation of a pinned sessile water droplet. Physical Review Fluids, 6(7), 073605.
Al-Sharafi, A., Yilbas, B. S., Sahin, A. Z., Ali, H., & Al-Qahtani, H. (2016). Heat transfer characteristics and internal fluidity of a sessile droplet on hydrophilic and hydrophobic surfaces. Applied Thermal Engineering, 108, 628-640.
Barash, L. Y., Bigioni, T. P., Vinokur, V. M., & Shchur, L. N. (2009). Evaporation and fluid dynamics of a sessile drop of capillary size. Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 79(4), 046301.
Bhardwaj, R., Fang, X., & Attinger, D. (2009). Pattern formation during the evaporation of a colloidal nanoliter drop: a numerical and experimental study. New Journal of Physics, 11(7), 075020.
Birdi, K. S., Vu, D. T., & Winter, A. (1989). A study of the evaporation rates of small water drops placed on a solid surface. The Journal of physical chemistry, 93(9), 3702-3703.
Bozorgmehr, B., & Murray, B. T. (2021). Numerical simulation of evaporation of ethanol–water mixture droplets on isothermal and heated substrates. ACS omega, 6(19), 12577-12590.
Buongiorno, J. (2006). Convective transport in nanofluids.
Carney, R. R. P. (2010). Probing metal nanoparticles and assemblies with analytical ultracentrifugation (Doctoral dissertation, Massachusetts Institute of Technology).
Carreon, Y. J., Rios-Ramirez, M., Moctezuma, R. E., & Gonzalez-Gutierrez, J. (2018). Texture analysis of protein deposits produced by droplet evaporation. Scientific reports, 8(1), 9580.
Chen, Y., Hong, F., & Cheng, P. (2020). Transient flow patterns in an evaporating sessile drop: A numerical study on the effect of volatility and contact angle. International Communications in Heat and Mass Transfer, 112, 104493.
Dash, S., Chandramohan, A., Weibel, J. A., & Garimella, S. V. (2014). Buoyancy-induced on-the-spot mixing in droplets evaporating on nonwetting surfaces. Physical Review E, 90(6), 062407.
Deegan, R. D. (2000). Pattern formation in drying drops. Physical review E, 61(1), 475.
Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997). Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389(6653), 827-829.
Diddens, C., Li, Y., & Lohse, D. (2021). Competing Marangoni and Rayleigh convection in evaporating binary droplets. Journal of fluid mechanics, 914, A23.
Dugas, V., Broutin, J., & Souteyrand, E. (2005). Droplet evaporation study applied to DNA chip manufacturing. Langmuir, 21(20), 9130-9136.
Edwards, A. M. J., Atkinson, P. S., Cheung, C. S., Liang, H., Fairhurst, D. J., & Ouali, F. F. (2018). Density-driven flows in evaporating binary liquid droplets. Physical review letters, 121(18), 184501.
Einstein, A. (1905). Uber die von der molekularkinetischen Theorie der Warme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Annalen der physik, 4.
Engineering ToolBox, (2004). Moist Air - Water Vapor and Saturation Pressure. [online] Available at: https://www.engineeringtoolbox.com/water-vapor-saturation-pressure-air-d_689.html.
Erbil, H. Y., McHale, G., & Newton, M. I. (2002). Drop evaporation on solid surfaces: constant contact angle mode. Langmuir, 18(7), 2636-2641.
Hu, H., & Larson, R. G. (2002). Evaporation of a sessile droplet on a substrate. The Journal of Physical Chemistry B, 106(6), 1334-1344.
Hu, H., & Larson, R. G. (2005). Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir, 21(9), 3972-3980.
Jang et al. (2012). Highly crystalline soluble acene crystal arrays for organic transistors: mechanism of crystal growth during dip?coating. Advanced Functional Materials, 22(5), 1005-1014.
Jia, W., & Qiu, H. H. (2003). Experimental investigation of droplet dynamics and heat transfer in spray cooling. Experimental Thermal and Fluid Science, 27(7), 829-838.
Jiang, W., Ding, G., Peng, H., & Hu, H. (2010). Modeling of nanoparticles’ aggregation and sedimentation in nanofluid. Current Applied Physics, 10(3), 934-941.
Kajiya, T., Kobayashi, W., Okuzono, T., & Doi, M. (2009). Controlling the drying and film formation processes of polymer solution droplets with addition of small amount of surfactants. The Journal of Physical Chemistry B, 113(47), 15460-15466.
Kang, K. H., Lim, H. C., Lee, H. W., & Lee, S. J. (2013). Evaporation-induced saline Rayleigh convection inside a colloidal droplet. Physics of Fluids, 25(4).
Li, X., Murray, B., & Narayan, S. (2023). Investigation of sessile droplet evaporation using a transient two-step moving mesh model. International Journal of Heat and Mass Transfer, 209, 124151.
Li, Y., Diddens, C., Lv, P., Wijshoff, H., Versluis, M., & Lohse, D. (2019). Gravitational effect in evaporating binary microdroplets. Physical review letters, 122(11), 114501.
Lin, Y., Chu, F., & Wu, X. (2023). Evaporation of heated droplets at different wetting modes: A decoupled study of diffusive and convective effects. International Journal of Heat and Mass Transfer, 207, 123993.
Lu, G., Duan, Y. Y., Wang, X. D., & Lee, D. J. (2011). Internal flow in evaporating droplet on heated solid surface. International journal of heat and mass transfer, 54(19-20), 4437-4447.
McHale, G., Rowan, S. M., Newton, M. I., & Banerjee, M. K. (1998). Evaporation and the wetting of a low-energy solid surface. The Journal of Physical Chemistry B, 102(11), 1964-1967.
McNab, G. S., & Meisen, A. (1973). Thermophoresis in liquids. Journal of Colloid and Interface Science, 44(2), 339-346.
Nguyen Thanh Cao. (2024). Transient flow patterns in a particle-containing sessile droplet: A numerical study on temperature effect. Central University Master Thesis.
Panwar, A. K., Barthwal, S. K., & Ray, S. (2003). Effect of evaporation on the contact angle of a sessile drop on solid substrates. Journal of adhesion science and technology, 17(10), 1321-1329.
Parsa, M., Harmand, S., & Sefiane, K. (2018). Mechanisms of pattern formation from dried sessile drops. Advances in colloid and interface science, 254, 22-47.
Paul, A., & Dhar, P. (2023). Transients of Marangoni and Stefan advection dynamics during generic sessile droplet evaporation. Physics of Fluids, 35(10).
Pearson, J. R. A. (1958). On convection cells induced by surface tension. Journal of fluid mechanics, 4(5), 489-500.
Polyanin, A. D., & Manzhirov, A. V. (2006). Handbook of mathematics for engineers and scientists. CRC Press
Pradhan, T. K., & Panigrahi, P. K. (2017). Evaporation induced natural convection inside a droplet of aqueous solution placed on a superhydrophobic surface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 530, 1-12.
Ristenpart, W. D., Kim, P. G., Domingues, C., Wan, J., & Stone, H. A. (2007). Influence of substrate conductivity on circulation reversal in evaporating drops. Physical review letters, 99(23), 234502.
Savino, R., & Monti, R. (1996). Buoyancy and surface-tension-driven convection in hanging-drop protein crystallizer. Journal of crystal growth, 165(3), 308-318.
Schlottke, J., & Weigand, B. (2008). Direct numerical simulation of evaporating droplets. Journal of Computational Physics, 227(10), 5215-5237.
Shao, X., Duan, F., Hou, Y., & Zhong, X. (2020). Role of surfactant in controlling the deposition pattern of a particle-laden droplet: Fundamentals and strategies. Advances in colloid and interface science, 275, 102049.
Son, G. (2010). A level-set method for analysis of microdroplet evaporation on a heated surface. Journal of mechanical science and technology, 24, 991-997.
Still, T., Yunker, P. J., & Yodh, A. G. (2012). Surfactant-induced Marangoni eddies alter the coffee-rings of evaporating colloidal drops. Langmuir, 28(11), 4984-4988.
Tritton, D. J. (2012). Physical fluid dynamics. Springer Science & Business Media.
Varanakkottu, S. N., Anyfantakis, M., Morel, M., Rudiuk, S., & Baigl, D. (2016). Light-directed particle patterning by evaporative optical marangoni assembly. Nano letters, 16(1), 644-650.
Wang, T. S., & Shi, W. Y. (2020). Transition of Marangoni convection instability patterns during evaporation of sessile droplet at constant contact line mode. International Journal of Heat and Mass Transfer, 148, 119138.
Wits, W. W., & Sridhar, A. (2010, February). Inkjet Printing of 3D Metallic Silver Complex Microstructures. In International Conference on Competitive Manufacturing, COMA 2010 (pp. 45-50). Stellenbosch University.
Xu, X., & Luo, J. (2007). Marangoni flow in an evaporating water droplet. Applied Physics Letters, 91(12).
Yang, K., Hong, F., & Cheng, P. (2014). A fully coupled numerical simulation of sessile droplet evaporation using Arbitrary Lagrangian–Eulerian formulation. International Journal of Heat and Mass Transfer, 70, 409-420.
Yoo, J. H., Kwon, H. J., Paeng, D., Yeo, J., Elhadj, S., & Grigoropoulos, C. P. (2016). Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal. Nanotechnology, 27(14), 145604.
Zhang et al. (2015). Mixed mode of dissolving immersed nanodroplets at a solid–water interface. Soft Matter, 11(10), 1889-1900.
楊凱傑. (2017). 微/奈米粒子粒徑與材質在液滴中對於不同親疏水表面咖啡環形成之自附著現象影響探討. 國立臺灣大學化學工程學系學位論文, 2017, 1-125.
賴冠霖. (2024). 疏水膠體液滴的蒸發及沉積物:溫度與表面活性劑的影響. 國立中央大學能源工程研究所碩士論文.
賴美蓁. (2023). 奈米流體親水液滴於蒸發初期的流場模擬:表面活性劑的影響. 國立中央大學機械工程學系碩士論文.
指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2024-12-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明