博碩士論文 106684001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:18.191.139.131
姓名 張?瑍(Yu-Huan Chang)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 應用熱反應試驗之反推估方法評估異質性含水層材料分佈
(Combined thermal response test and tomography technique to estimate the properties distribution of a heterogeneous aquifer.)
相關論文
★ 延散效應對水岩交互作用反應波前的影響★ 序率譜方法制定異質性含水層水井捕集區
★ 跨孔式注氣試驗方法推估異質性非飽和層土壤氣體流動參數★ 現地跨孔式抽水試驗推估異質性含水層水文地質特性
★ iTOUGH2應用於實驗室尺度非飽和土壤參數之推估★ HYDRUS-1D模式應用於入滲試驗推估非飽和土壤特性參數
★ 沿海含水層異質性對海淡水交界面影響之不確定性分析★ 非拘限砂質海岸含水層中潮汐和沙灘坡度水文動力條件影響苯傳輸
★ 利用MODFLOW配合SUB套件推估雲林地區垂向平均長期地層下陷趨勢★ 高雄平原地區抽水引致汙染潛勢評估
★ 利用自然電位法監測淺層土壤入滲歷程★ 利用LiDAR點雲及影像資料決定露頭節理結合面之研究
★ 臺灣西部沿海海水入侵與地下水排出模擬分析★ 三氯乙烯地下水污染場址整治後期傳輸行為分析¬-應用開源FreeFEM++有限元素模式架構
★ 都會地區滯洪池增設礫石樁之入滲效益模擬與分析★ 利用數值模擬探討二氧化碳於異向性及異質性鹽水層之遷移行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年因城市擴張、產業經濟發展活動增長和生活水平提高,使得社會對於相關資源需求量持續增加,應就其他資源進行有效評估及開發,如量化沿海含水層之可用水量做為銜接用水需求缺口之方案,可提供水資源開發計畫參考。對於電力需求而言,地熱能作為潛在方案提供了環保、經濟且高效的能源生產方式,因此有效且準確的調查水力及熱傳導性質至關重要,透過應用最新技術使我們能夠在空間和時間上進行高解析度的溫度測量。本研究探討以熱示蹤劑技術量化含水層之地下水通量,以及利用溫度反應進行含水層參數分佈反推估,以室內試驗量化分析熱示蹤劑試驗影響範圍及效率,結果顯示當維持灌注溫度增加灌注率時,影響距離與增加幅度成正比,當維持灌注率增加灌注溫度時,影響範圍隨溫度越高其增加幅度逐漸遞減。在場址尺度試驗中,探討沿海含水層海淡水交互作用與潮汐變動特性,估算地下水通量在潮汐狀況由高位下降時地下水流量範圍為1.77至0.2 m/day,而潮汐狀況由低位上升則為0.25至0.02 m/day,以潮汐狀況由低位上升地下水通量平均為0.5 m/day,值得注意的是,垂直方向上的流量分佈差異很大,主要受到含水層材料的控制。
摘要(英) In recent years, urban expansion, increased industrial economic activities, and improved living standards have led to a continuous rise in the demand for related resources. Therefore, it is crucial to conduct effective assessments and develop alternative resources, such as quantifying the available water resources in coastal aquifers to bridge the gap in water demand, providing valuable references for water resource development plans. Regarding electricity demand, geothermal energy presents an environmentally friendly, economical, and efficient method for energy production. The efficiency of heat pumps varies with groundwater levels, temperature, water content, and the thermal transport properties of surrounding soil, making it essential to conduct effective and accurate investigations of hydraulic and thermal conductivity properties. Currently, most methods used for hydrogeological or geothermal environment investigations are unable to estimate features characterized by heterogeneity. The application of the latest technologies allows for high-resolution temperature measurements in both spatial and temporal dimensions, offering advantages for understanding the heterogeneity of porous media and the behavior of heat transfer.
This study explores the use of thermal tracer technology to quantify groundwater flux in aquifers and to infer aquifer parameter distribution based on temperature responses. Additionally, laboratory experiments are conducted to quantitatively analyze the range of influence and efficiency of thermal tracer tests.
The results indicate that maintaining increased injection temperatures correlates with an increased range of impact, while maintaining constant injection rates with increased injection temperatures leads to a gradually diminishing range of influence as temperatures rise. In site-scale tests, thermal tracer tests are employed to evaluate the stratified flux differences caused by the layered structure of coastal aquifers while investigating the interactions between freshwater and seawater and the characteristics of tidal fluctuations. When the tidal conditions rise from low to high, the average groundwater flux is estimated to be 0.5 m/day, with a range of 1.77 to 0.2 m/day during high tide to low tide conditions, and 0.25 to 0.02 m/day when conditions transition from low to high tide. Notably, the vertical distribution of flux shows significant differences, primarily controlled by the properties of the aquifer materials.
關鍵字(中) ★ 熱示蹤劑試驗
★ 單井加熱試驗
★ 異質性含水層
★ 沿海含水層
★ 地下水通量
★ FODTS
★ HYDRUS-2D
關鍵字(英) ★ Thermal tracer tests
★ Single-well heating tests
★ Heterogeneous aquifers
★ Coastal aquifers
★ Groundwater flux
★ FODTS
★ HYDRUS-2D
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
一、緒論 1
1-1 研究動機與目的 1
1-2 研究流程 3
1-3 章節概述 5
二、文獻回顧 6
2-1 關鍵區內質能交換 6
2-1-1 地下含水層中溫度時空變異特性 6
2-1-2 潮汐對沿海含水層之地下水流及傳輸影響 8
2-2 地下水通量推估方法 10
2-2-1 示蹤劑試驗 10
2-2-2 主動式加熱推估地下水通量 14
2-2-3 反推估模式 21
2-4 分佈式光纖偵溫系統 23
2-4 水力及熱傳導參數試驗 26
2-2-2 落水頭試驗 26
2-2-2 壓力鍋試驗 28
2-2-2 熱傳輸參數試驗 30
三、實驗室尺度熱示蹤劑試驗 32
3-1 室內砂箱試驗說明 32
3-1-1 砂箱配置及試驗規劃 33
3-1-3 材料水力傳輸參數及熱傳輸參數量測結果 35
3-2 室內砂箱注水試驗及模擬結果 35
3-2-1 模式敏感度分析 35
3-2-2 灌注傳輸模擬分析 36
3-2-2 熱示蹤劑傳輸距離與灌注條件之關係 38
3-4 溫度反推估試驗 40
3-2-2 溫度分布動態變化 41
3-2-2 砂箱材料分布反推估 43
四、場址尺度主動式加熱試驗 46
4-1 試驗場址說明 46
4-1-2 試驗井場背景說明 48
4-2 主動式加熱試驗 50
4-3 主動式加熱試驗應用於沿海含水層 51
4-3-1 含水層熱反應分析 51
4-3-2 破透曲線擬合分析 54
4-3-3 地下水通量垂直分布推估 56
五、結論與建議 60
5-1 結論 60
5-2 建議 62
參考文獻 64
參考文獻 [1] 汪中和,「氣候暖化與台灣的水資源」,?冶:中國?冶工程學會會刊 59(2),11-15頁,2015。
[2] Pyne, R. David G. "Aquifer storage recovery: An ASR solution to saltwater intrusion at Hilton Head Island, South Carolina, USA." Environmental Earth Sciences 73.12: 7851-7859, 2015.
[3] Guttman, Joseph, Ido Negev, and Genadi Rubin. "Design and testing of recharge wells in a coastal aquifer: summary of field scale pilot tests." Water 9.1: 53, 2017.
[4] Zuurbier, Koen G., et al. "How subsurface water technologies (SWT) can provide robust, effective, and cost-efficient solutions for freshwater management in coastal zones." Water Resources Management 31: 671-687, 2017.
[5] Banks, Eddie W., Margaret A. Shanafield, and Peter G. Cook. "Induced temperature gradients to examine groundwater flowpaths in open boreholes." Groundwater 52.6: 943-951, 2014.
[6] Gan, Guohui. "Dynamic thermal performance of horizontal ground source heat pumps–The impact of coupled heat and moisture transfer." Energy 152: 877-887, 2018.
[7] Colombani, Nicolo, B. M. S. Giambastiani, and Micol Mastrocicco. "Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test." Journal of Hydrology 525: 650-657, 2015.
[8] Hermans, Thomas, et al. "Quantitative temperature monitoring of a heat tracing experiment using cross-borehole ERT." Geothermics 53: 14-26, 2015.
[9] Somogyvari, Mark, Peter Bayer, and Ralf Brauchler. "Travel-time-based thermal tracer tomography." Hydrology and Earth System Sciences 20.5: 1885-1901, 2016.
[10] Wagner, Valentin, et al. "Thermal tracer testing in a sedimentary aquifer: Field experiment (Lauswiesen, Germany) and numerical simulation." Hydrogeology Journal 1.22: 175-187, 2014.
[11] de La Bernardie, Jerome, et al. "Thermal attenuation and lag time in fractured rock: Theory and field measurements from joint heat and solute tracer tests." Water Resources Research 54.12: 10-053, 2018.
[12] Anderson, Mary P. "Heat as a ground water tracer." Groundwater 43.6: 951-968, 2005.
[13] Wildemeersch, Samuel, et al. "Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers." Journal of Contaminant hydrology 169: 90-99, 2014.
[14] Esen, Hikmet, and Mustafa Inalli. "In-situ thermal response test for ground source heat pump system in Elaz??, Turkey." Energy and Buildings 41.4: 395-401, 2009.
[15] Arnell, N. W., and C. Liu, Hydrology and water resources, in Climate Change 2001: Impacts, Adaptation, and Vulnerability: Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change, pp. 194–227, Cambridge Univ. Press, New York, 2001.
[16] Barnett, T. P. "Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 2005.
[17] Lettenmaier, Dennis P., et al. "Water resources implications of global warming: A US regional perspective." Climatic Change 43.3: 537-579, 1999.
[18] Panagoulia, Dionysia, and George Dimou. "Sensitivities of groundwater-streamflow interaction to global climate change." Hydrological Sciences Journal 41.5: 781-796, 1996.
[19] Snyder, Mark A., et al. "Climate responses to a doubling of atmospheric carbon dioxide for a climatically vulnerable region." Geophysical Research Letters 29.11: 9-1, 2002.
[20] Sophocleous, Marios. "Climate change: Why should water professionals care?." Ground Water 42.5: 637-638, 2004.
[21] Lapham, Wayne W. Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. No. 2337. Dept. of the Interior, US Geological Survey; USGPO; Books and Open-File Reports Section, US Geological Survey, 1989.
[22] . Silliman, Stephen E., and David F. Booth. "Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana." Journal of Hydrology 146: 131-148, 1993.
[23] Constantz, Jim, and Carole L. Thomas. "The use of streambed temperature profiles to estimate the depth, duration, and rate of percolation beneath arroyos." Water Resources Research 32.12: 3597-3602, 1996.
[24] Constantz, Jim, et al. "Analysis of temperature profiles for investigating stream losses beneath ephemeral channels." Water Resources Research 38.12: 52-1, 2002.
[25] Stonestrom, David Arthur, and Jim Constantz, eds. Heat as a tool for studying the movement of ground water near streams. Vol. 1260. US Department of the Interior, US Geological Survey, 2003.
[26] Stauffer, Fritz, et al. Thermal use of shallow groundwater. CRC Press, 2013.
[27] Cherry, John A., and R. Allan Freeze. Groundwater. Englewood Cliffs, NJ: Prentice-Hall, 1979.
[28] Irvine, Dylan J., et al. "Using diurnal temperature signals to infer vertical groundwater?surface water exchange." Groundwater 55.1: 10-26, 2017.
[29] Taniguchi, Makoto, et al. "Evaluating ground water–sea water interactions via resistivity and seepage meters." Groundwater 45.6: 729-735, 2007.
[30] Kurylyk, Barret L., et al. "Rethinking the use of seabed sediment temperature profiles to trace submarine groundwater flow." Water Resources Research 54.7: 4595-4614, 2018.
[31] Rau, Gabriel C., et al. "Heat as a tracer to quantify water flow in near-surface sediments." Earth-Science Reviews 129: 40-58, 2014.
[32] Reilly, Thomas E., and Alvin S. Goodman. "Quantitative analysis of saltwater-freshwater relationships in groundwater systems—A historical perspective." Journal of Hydrology 80.1-2: 125-160, 1985.
[33] Cable, Jaye E., and Jonathan B. Martin. “In situ evaluation of nearshore marine and fresh pore water transport into Flamengo Bay, Brazil.”, Estuarine, Coastal and Shelf Science, 76(3), 473-483, 2008.
[34] Martin, Jonathan B., et al. “Magnitudes of submarine groundwater discharge from marine and terrestrial sources: Indian River Lagoon, Florida.”, Water Resources Research, 43(5), 2007.
[35] McCoy, C. A., et al. “Hydrogeological characterization of southeast coastal plain aquifers and groundwater discharge to Onslow Bay, North Carolina (USA).”, Journal of Hydrology, 339(3-4), 159-171, 2007.
[36] Thompson, C., Leslie, S., and Roudrajit, M. “Hydrogeological modeling of submarine groundwater discharge on the continental shelf of Louisiana.” Journal of Geophysical Research: Oceans, 112(C3), 2007.
[37] Wilson, Alicia M. “Fresh and saline groundwater discharge to the ocean: A regional perspective.”, Water Resources Research, 41(2), 2005.
[38] Brantley, S.L., Goldhaber, M.B., Ragnarsdottir, V., Crossing disciplines and scales to under? stand the Critical Zone. Elements 3, 307–314, 2007.
[39] Burow, K. R., J. Constantz, and R. Fujii, Heat as a tracer to estimate dissolved organic carbon flux from a restored wetland, Ground Water, 43(4), 545– 556, 2005.
[40] Cote, J., Fillion,M.-H., Konrad, J.-M., Estimating hydraulic and thermal conductivities of crushed granite using porosity and equivalent particle size. J. Geotech. Geoenviron. 137, 834–842, 2011.
[41] Domenico, P. A. and Schwartz, F. W.: Physical and chemical hydro- geology, Wiley, New York, 1990.
[42] Erasmus K. Oware and Eric W. Peterson, Storm driven seasonal variation in the thermal 2 response of the streambed water, Water, 2020.
[43] Swanson, T.E.; Cardenas, M.B. Diel heat transport within the hyporheic zone of a pool–riffle–pool 341 sequence of a losing stream and evaluation of models for fluid flux estimation using heat. Limnology & 342 Oceanography, 55, 1741–1754, 2010.
[44] Nakajima, Toshimi, et al. Fresh and recirculated submarine groundwater discharge evaluated by geochemical tracers and a seepage meter at two sites in the Seto Inland Sea, Japan. Hydrology, 5.4: 61, 2018.
[45] Sugimoto, Ryo, et al. Seasonal changes in submarine groundwater discharge and associated nutrient transport into a tideless semi-enclosed embayment (Obama Bay, Japan). Estuaries and Coasts, 39: 13-26, 2016.
[46] Taaniguchi, Makoto. Tidal effects on submarine groundwater discharge into the ocean. Geophysical Research Letters, 29.12: 2-1-2-3, 2002.
[47] George, Mintu Elezebath, et al. Investigation on submarine groundwater discharge at Kozhikkode coastal aquifer, SW western Ghats. Journal of the Geological Society of India, 92: 626-633, 2018.
[48] Pehme, P. E., et al. “Enhanced detection of hydraulically active fractures by temperature profiling in lined heated bedrock boreholes.”, Journal of Hydrology, 484, 1-15, 2013.
[49] Kipp, Kenneth L. “HST3D: A computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems.”, US Geological Survey, Vol. 86, No.4095, 1987.
[50] Glover, Robert E. "The pattern of fresh?water flow in a coastal aquifer." Journal of Geophysical Research 64.4: 457-459, 1959.
[51] Moore, Willard S. "Large groundwater inputs to coastal waters revealed by 226Ra enrichments." Nature 380.6575: 612-614, 1996.
[52] Burnett, W. C., et al. "Quantifying submarine groundwater discharge in the coastal zone via multiple methods." Science of the total Environment 367.2-3: 498-543, 2006.
[53] Robinson, C., L. Li, and D. A. Barry. "Effect of tidal forcing on a subterranean estuary." Advances in Water Resources 30.4: 851-865, 2007.
[54] Sarris, Theo S., Murray Close, and Phillip Abraham. "Using solute and heat tracers for aquifer characterization in a strongly heterogeneous alluvial aquifer." Journal of Hydrology 558: 55-71, 2018.
[55] Smith, A. J. “Mixed convection and density?dependent seawater circulation in coastal aquifers.”, Water Resources Research, 40(8), 2004.
[56] Kaleris, V. “Submarine groundwater discharge: Effects of hydrogeology and of near shore surface water bodies.”, Journal of hydrology, 325(1-4), 96-117, 2006.
[57] Konikow, L. F., et al. “Seawater circulation in sediments driven by interactions between seabed topography and fluid density.”, Water Resources Research, 49(3), 1386-1399, 2013.
[58] Uchiyama, Y, et al. “Submarine groundwater discharge into the sea and associated nutrient transport in a sandy beach.”, Water Resources Research, 36(6), 1467-1479, 2000.
[59] Kohout, F. A. “A hypothesis concerning cyclic flow of salt water related to geothermal heating in the Floridan aquifer.” ,Transactions of the New York Academy of Sciences, 28(2), 249-271, 1965.
[60] Longuet, H, Michael, S. “Wave set-up, percolation and undertow in the surf zone.”, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 390(1799), 283-291, 1983.
[61] Anderson, J., William,P., and Ryan E. “Effect of interannual climate oscillations on rates of submarine groundwater discharge.”, Water Resources Research, 46(5), 2010.
[62] Yu, Xuan, and Holly A. Michael. "Offshore pumping impacts onshore groundwater resources and land subsidence." Geophysical Research Letters 46.5: 2553-2562, 2019.
[63] Reiter, Marshall. "Using precision temperature logs to estimate horizontal and vertical groundwater flow components." Water Resources Research 37.3: 663-674, 2001.
[64] Drury, M. J., A. M. Jessop, and T. J. Lewis. "The detection of groundwater flow by precise temperature measurements in boreholes." Geothermics 13.3: 163-174, 1984.
[65] TRAINER, FRANK W. "Temperature profiles in water wells as indicators of bedrock fractures." US GEOL SURV PROF PAP 600-B, PP B 210-B 214, 1968. 5 P, 3 FIG, 2 REF., 1968.
[66] McCoy, C. A., and D. R. Corbett. “Review of submarine groundwater discharge (SGD) in coastal zones of the Southeast and Gulf Coast regions of the United States with management implications.”, Journal of environmental management, 90(1), 644-651, 2009.
[67] W. S. Moore, “The effect of submarine groundwater discharge on the ocean” Annual review of marine science, Vol 2, pp.59-88, 2010.
[68] Jamin, Pierre, et al. "Direct measurement of groundwater flux in aquifers within the discontinuous permafrost zone: an application of the finite volume point dilution method near Umiujaq (Nunavik, Canada)." Hydrogeology Journal, 2020.
[69] Cook, P. G., et al. "Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers." Journal of Hydrology 277.1-2: 74-88, 2003.
[70] Colombani, Nicolo, B. M. S. Giambastiani, and Micol Mastrocicco. "Combined use of heat and saline tracer to estimate aquifer properties in a forced gradient test." Journal of Hydrology 525: 650-657, 2015.
[71] Klepikova, Maria V., et al. "Heat as a tracer for understanding transport processes in fractured media: Theory and field assessment from multiscale thermal push?pull tracer tests." Water Resources Research 52.7: 5442-5457, 2016.
[72] Leaf, Andrew T., David J. Hart, and Jean M. Bahr. "Active thermal tracer tests for improved hydrostratigraphic characterization." Groundwater 50.5: 726-735, 2012.
[73] Vandenbohede, Alexander, Andy Louwyck, and Luc Lebbe. "Conservative solute versus heat transport in porous media during push-pull tests." Transport in Porous Media 76: 265-287, 2009.
[74] Stallman, R. W. "Steady one?dimensional fluid flow in a semi?infinite porous medium with sinusoidal surface temperature." Journal of geophysical Research 70.12: 2821-2827, 1965.
[75] Bakker, Mark, et al. "An active heat tracer experiment to determine groundwater velocities using fiber optic cables installed with direct push equipment." Water Resources Research 51.4: 2760-2772, 2015.
[76] des Tombe, Bas F., et al. "Estimation of the variation in specific discharge over large depth using distributed temperature sensing (DTS) measurements of the heat pulse response." Water Resources Research 55.1: 811-826, 2019.
[77] Diao, Nairen, Qinyun Li, and Zhaohong Fang. "Heat transfer in ground heat exchangers with groundwater advection." International Journal of Thermal Sciences 43.12 (2004): 1203-1211, 2004.
[78] Hamdhan, Indra Noer, and Barry G. Clarke. "Determination of thermal conductivity of coarse and fine sand soils." Proceedings World Geothermal Congress. Vol. 2010., 2010.
[79] Westhoff, M. C., et al. "A distributed stream temperature model using high resolution temperature observations." Hydrology and Earth System Sciences 11.4: 1469-1480, 2007.
[80] Vogt, Tobias, et al. "Estimation of seepage rates in a losing stream by means of fiber-optic high-resolution vertical temperature profiling." Journal of Hydrology 380.1-2: 154-164, 2010.
[81] Briggs, Martin A., et al. "Using high?resolution distributed temperature sensing to quantify spatial and temporal variability in vertical hyporheic flux." Water Resources Research 48.2, 2012.
[82] Sebok, E., et al. "High?resolution distributed temperature sensing to detect seasonal groundwater discharge into Lake Vang, Denmark." Water Resources Research 49.9: 5355-5368, 2013.
[83] Halloran, Landon JS, et al. "Improved spatial delineation of streambed properties and water fluxes using distributed temperature sensing." Hydrological Processes 30.15: 2686-2702, 2016.
[84] Bense, V. F., et al. "Distributed T emperature S ensing as a downhole tool in hydrogeology." Water Resources Research 52.12: 9259-9273, 2016.
[85] Read, T., et al. "Active?distributed temperature sensing to continuously quantify vertical flow in boreholes." Water Resources Research 50.5: 3706-3713, 2014.
[86] Coleman, Thomas I., et al. "Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes." Journal of Hydrology 528: 449-462, 2015.
[87] Kazmierczak, J., et al. "Groundwater flow and heterogeneous discharge into a seepage lake: Combined use of physical methods and hydrochemical tracers." Water Resources Research 52.11: 9109-9130, 2016.
[88] Rogers, Alan. "Distributed optical-fibre sensing." Measurement Science and Technology 10.8: R75, 1999.
[89] Farahani, Mostafa Ahangrani, and Torsten Gogolla. "Spontaneous Raman scattering in optical fibers with modulated probe light for distributed temperature Raman remote sensing." Journal of Lightwave Technology 17.8: 1379, 1999.
[90] Hausner, Mark B., et al. "Calibrating single-ended fiber-optic Raman spectra distributed temperature sensing data." Sensors 11.11: 10859-10879, 2011.
[91] Dakin, J. P., et al. "Distributed optical fibre Raman temperature sensor using a semiconductor light source and detector." Electronics letters 21.13: 569-570, 1985.
[92] Selker, John S., et al. "Distributed fiber?optic temperature sensing for hydrologic systems." Water Resources Research 42.12, 2006.
[93] 團氏青翠,「Estimations of aquifer properties by using cross-hole hydraulic and heat tomography surveys in a two- dimensional profile sandbox」,學位論文,國立中央大學,中華民國109年1月。
[94] 秦淑娟,「實驗室尺度異質性含水層之地下水熱傳輸試驗與模式分析」,學位論文,國立中央大學,中華民國109年7月。
[95] 許家毓,「以高解析度熱示蹤劑試驗解析沿海含水層分層地下水流場與熱傳輸特性」,學位論文,國立中央大學,中華民國111年7月。
指導教授 倪春發(Chuen-Fa Ni) 審核日期 2025-1-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明