博碩士論文 111624605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.136.23.252
姓名 Lam Gia Huy(Lam Gia Huy)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱
(Numerical simulation of CO2 storage and CO2 leakage along the fault during CO2 geo-sequestration in saline aquifer using THMC software)
相關論文
★ 單井垂直循環流場追蹤劑試驗數學模式發展★ 斷層對抽水試驗洩降反應之影響
★ 漸近型式尺度延散度之一維移流-延散方程式之Laplace轉換級數解★ 延散效應對水岩交互作用反應波前的影響
★ 異向垂直循環流場溶質傳輸分析★ 溶解反應對碳酸岩孔隙率與水力傳導係數之影響
★ 濁水溪沖積扇地下水硝酸鹽氮污染潛勢評估與預測模式建立★ 異向含水層部分貫穿井溶質傳輸分析
★ 溶解與沈澱反應對碳酸鈣礦石填充床孔隙率與水力傳導係數變化之影響★ 有限長度圓形土柱實驗二維溶質傳輸之解析解
★ 第三類注入邊界條件二維圓柱座標移流-延散方程式解析解發展★ 側向延散對雙井循環流場追蹤劑試驗溶質傳輸的影響
★ 關渡平原地下水流動模擬★ 應用類神經網路模式推估二維徑向收斂流場追蹤劑試驗縱向及側向延散度
★ 關渡濕地沉積物中砷之地化循環與分布★ 結合水質變異與水流模擬模式評估屏東平原地下水適合飲用之區域
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-2-1以後開放)
摘要(中) 應對氣候變化的緊迫性因全球碳排放問題而更加凸顯,而在鹽水層中進行二氧化碳地質封存(CO? geo-sequestration)已成為碳捕集與封存(CCS)的一項關鍵策略。然而,許多研究尚未充分探討二氧化碳和鹽水密度的作用,以及二氧化碳密度與蓋層滲透率變化對儲存性能的影響。此外,洩漏風險仍然是一項重大挑戰,需要準確的預測以確保儲存場址的安全性和有效性。本研究利用由國立中央大學(NCU)CAMRDA開發的THMC模型,模擬地下熱-水-力-化(T-H-M-C)過程之間的複雜相互作用。該模型專注於模擬二氧化碳在不同密度和蓋層滲透率條件下的運移與穩定性,同時評估二氧化碳沿蓋層斷層洩漏的可能性。研究結果表明,二氧化碳密度顯著影響羽流行為:低密度二氧化碳因浮力效應迅速上升至含水層頂部,增加洩漏風險;而高密度二氧化碳則表現出更穩定的行為,垂直運移減少。此外,研究結果證實,THMC模型能夠有效模擬深鹽水層中的二氧化碳儲存,識別潛在洩漏路徑,並為提升注入一年期間的儲存系統安全性與穩定性提供有價值的見解。
摘要(英) The urgency of addressing climate change is underscored by the global carbon issue, highlighting CO? geo-sequestration within saline aquifers as a key strategy for carbon capture and storage (CCS). However, many studies have yet to fully explore the roles of CO? and brine densities, as well as the effects of CO? density and caprock permeability variations on storage performance. Additionally, leakage risk remains a significant challenge, necessitating accurate predictions to ensure storage site safety and effectiveness. This study utilizes the THMC model, developed by CAMRDA at NCU, to simulate the complex interplay of underground thermo-hydro-mechanical-chemical (T-H-M-C) processes. The model focuses on the movement and stabilization of CO? under varying density and caprock permeability conditions, while also assessing the potential for CO? leakage along faults in the caprock layer. The findings indicate that CO? density significantly influences plume behavior: low-density CO? tends to rise rapidly toward the top of the aquifer due to buoyancy, increasing leakage risks. At the same time, high-density CO? exhibits more stable behavior with reduced vertical migration. Moreover, the results demonstrate that the THMC model effectively simulates CO? storage in deep saline aquifers, identifying potential leakage pathways and providing insights to improve storage system safety and stability during a year of injection
關鍵字(中) ★ 二氧化碳地質封存
★ 二氧化碳洩漏
★ 過錯
★ THMC軟體
關鍵字(英) ★ CO2 geosequestration
★ CO2 leakage
★ fault
★ THMC software
論文目次 ABSTRACT i
摘要 ii
ACKNOWLEDGEMENT iii
TABLE OF CONTENTS iv
LIST OF FIGURES vi
LIST OF TABLES viii
EXPLANATION OF SYMBOLS ix
I. Introduction 1
1.1 General background of CO2 sequestration 1
1.1.1 Carbon dioxide global issues 1
1.1.2 Carbon sequestration: 2
1.1.3 Saline aquifer 5
1.1.4 Fault/Reactivated fault 6
1.1.5 Risk assessment of CO2 leakage along fault 6
1.1.6 Introduction of THMC 7
1.2 Literature review 9
1.3 Motivation 10
1.4 Objectives 11
1.5 Research process 11
II. Methodology 12
2.1 Multiphase fluid flow theory and numerical simulation 12
2.1.1 Multiphase flow 12
2.1.2 Fluid saturation 12
2.1.3 Interfacial tension and wettability 13
2.1.4 Relationship between capillary pressure and saturation 14
2.1.5 Darcy’s Law 16
2.1.6 Empirical formula 20
2.2 THMC 23
2.2.1 Governing Equation 23
2.2.1.1 Multiphase flow module (H): 23
2.2.1.2 Heat transfer module (T): 27
2.2.1.3 Mechanical transfer module (M): 28
2.2.1.4 Chemistry Module (C) 30
2.2.1.5 Coupled heat transfer (T) – multiphase flow (H) – mechanics (M) – chemical(C) analysis: 31
2.3 Model description 32
2.3.1 Parameters collection 32
2.3.2 Large-scale simulation of CO2 storage in the first stage of injection 34
2.3.2.1 Model setup 34
2.3.2.1.1 Initial condition for multiphase flow (H) 36
2.3.2.1.2 Boundary condition for multiphase flow 36
2.3.3 Fault application 38
2.3.3.1 Model of fault application 38
2.3.3.2 Fault generation 40
III. Results and discussions 41
3.1 Large-scale CO2 storage in the first stage injection 41
3.1.1 Effect of different caprock permeabilities on the storage site 41
3.1.1.1 High permeability of caprock layer (kc= 59 imes10-18 m2) 44
3.1.1.2 Moderate permeability of caprock layer (kc= 59 imes10-19 m2) 46
3.1.1.3 Low permeability of caprock layer (kc= 59 imes10-20 m2) 48
3.1.2 Risk assessment of CO2 leakage along fault 50
3.1.2.1 Low CO2 supercritical density (
ho scCO2=266 kg/m3) 52
3.1.2.2 Moderate CO2 supercritical density (
ho scCO2=500 kg/m3) 53
3.1.2.3 Denses CO2 supercritical density (
ho scCO2=714 kg/m3) 53
IV. Conclusions 54
V. References 56
參考文獻 1. 2°C, I. o. (n.d. ). Global CO2 levels. https://www.2degreesinstitute.org/
2. Abedini, A., & Torabi, F. (2014). On the CO2 storage potential of cyclic CO2 injection process for enhanced oil recovery. Fuel, 124, 14-27.
3. Arts, R., Chadwick, A., Eiken, O., Thibeau, S., & Nooner, S. (2008). Ten years′ experience of monitoring CO2 injection in the Utsira Sand at Sleipner, offshore Norway. First break, 26(1).
4. Azad, V. J., Li, C., Verba, C., Ideker, J. H., & Isgor, O. B. (2016). A COMSOL–GEMS interface for modeling coupled reactive-transport geochemical processes. Computers & Geosciences, 92, 79-89.
5. Bains, P., Psarras, P., & Wilcox, J. (2017). CO2 capture from the industry sector. Progress in Energy and Combustion Science, 63, 146-172.
6. Boot-Handford, M. E., Abanades, J. C., Anthony, E. J., Blunt, M. J., Brandani, S., Mac Dowell, N., Fernandez, J. R., Ferrari, M.-C., Gross, R., & Hallett, J. P. (2014). Carbon capture and storage update. Energy & Environmental Science, 7(1), 130-189.
7. Celia, M. A., Bachu, S., Nordbotten, J. M., & Bandilla, K. W. (2015). Status of CO2 storage in deep saline aquifers with emphasis on modeling approaches and practical simulations. Water Resources Research, 51, 6846 - 6892.
8. Class, H., Ebigbo, A., Helmig, R., Dahle, H. K., Nordbotten, J. M., Celia, M. A., Audigane, P., Darcis, M., Ennis-King, J., & Fan, Y. (2009). A benchmark study on problems related to CO 2 storage in geologic formations: summary and discussion of the results. Computational geosciences, 13, 409-434.
9. Fetter, C. W., Boving, T., & Kreamer, D. (2017). Contaminant hydrogeology. Waveland Press.
10. Friedlingstein, P., O’Sullivan, M., Jones, M. W., Andrew, R. M., Bakker, D. C. E., Hauck, J., Landschutzer, P., Le Quere, C., Luijkx, I. T., Peters, G. P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S. A., Canadell, J. G., Ciais, P., Jackson, R. B., Alin, S. R., Anthoni, P., . . . Zheng, B. (2023). Global Carbon Budget 2023. Earth System Science Data.
11. Gholami, R., Raza, A., & Iglauer, S. (2021). Leakage risk assessment of a CO2 storage site: A review. Earth-Science Reviews, 223, 103849.
12. Hemme, C., & Van Berk, W. (2017). Change in cap rock porosity triggered by pressure and temperature dependent CO2–water–rock interactions in CO2 storage systems. Petroleum 3: 96–108. In.
13. Kempka, T., & Kuhn, M. (2013). Numerical simulations of CO2 arrival times and reservoir pressure coincide with observations from the Ketzin pilot site, Germany. Environmental earth sciences, 70, 3675-3685.
14. Khan, C., Ge, L., & Rudolph, V. (2015). Reservoir simulation study for CO2 sequestration in saline aquifers. International Journal of Applied Science and Technology, 5(4), 30-45.
15. Khudaida, K. J., & Das, D. B. (2014). A numerical study of capillary pressure–saturation relationship for supercritical carbon dioxide (CO2) injection in deep saline aquifer. Chemical Engineering Research and Design, 92(12), 3017-3030.
16. Le Quere, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., Korsbakken, J. I., Peters, G. P., Canadell, J. G., & Jackson, R. B. (2018). Global carbon budget 2017. Earth System Science Data, 10(1), 405-448.
17. Lei, H., Li, J., Li, X., & Jiang, Z. (2016). EOS7Cm: An improved TOUGH2 module for simulating non-isothermal multiphase and multicomponent flow in CO2–H2S–CH4–brine systems with high pressure, temperature and salinity. Computers & Geosciences, 94, 150-161.
18. Lin, Y. S. (2024). Numerical simulation of multiphase flow and mechanical coupling considering gas migration in heterogeneous bentonite (Master’s thesis). National Central University.
19. May, F., Krull, P., & Gerling, P. (2004). CO2 storage scenarios in North Germany GESTCO project case studies. Bundesanstalt fur Geowissenschaftenund Rohstoffe, Hannover.
20. Metz, B., Davidson, O., De Coninck, H., Loos, M., & Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Cambridge: Cambridge University Press.
21. Miocic, J. M., Gilfillan, S. M., Roberts, J. J., Edlmann, K., McDermott, C. I., & Haszeldine, R. S. (2016). Controls on CO2 storage security in natural reservoirs and implications for CO2 storage site selection. International Journal of Greenhouse Gas Control, 51, 118-125.
22. Mutailipu, M., Xue, Q., Li, T., Yang, Y., & Xue, F. (2023). Thermodynamic Properties of a Gas–Liquid–Solid System during the CO2 Geological Storage and Utilization Process: A Review. Energies, 16(21), 7374.
23. Newell, P., & Martinez, M. J. (2020). Numerical assessment of fault impact on caprock seals during CO2 sequestration. International Journal of Greenhouse Gas Control, 94, 102890.
24. Nghiem, L., Sammon, P., Grabenstetter, J., & Ohkuma, H. (2004, April). Modeling CO2 storage in aquifers with a fully-coupled geochemical EOS compositional simulator. In SPE Improved Oil Recovery Conference? (pp. SPE-89474). SPE.
25. NOAA. (2022). Carbon dioxide now more than 50% higher than pre-industrial levels. https://www.noaa.gov/news-release/carbon-dioxide-now-more-than-50-higher-than-pre-industrial-levels
26. Nordbotten, J. M., & Celia, M. A. (2011). Geological storage of CO2: modeling approaches for large-scale simulation. John Wiley & Sons.
27. Parker, J., Lenhard, R., & Kuppusamy, T. (1987). A parametric model for constitutive properties governing multiphase flow in porous media. Water Resources Research, 23(4), 618-624.
28. Ranganathan, P., van Hemert, P., Rudolph, E. S. J., & Zitha, P. Z. (2011). Numerical modeling of CO2 mineralisation during storage in deep saline aquifers. Energy Procedia, 4, 4538-4545.
29. Sung, R. T., Li, M.-H., Dong, J. J., Lin, A. T. S., Hsu, S. K., Wang, C. Y., & Yang, C. N. (2014). Numerical assessment of CO2 geological sequestration in sloping and layered heterogeneous formations: A case study from Taiwan. International Journal of Greenhouse Gas Control, 20, 168-179.
30. Tsai, C. H., & Yeh, G. T. (2012). Retention characteristics for multiple-phasefluid systems. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 23(4), 451.
31. Tseng, C. H., Su, W. C., Kuo, C. C., & Lai, C. L. (2015). Simulating Migration Properties of Aquifer Disposal of CO2 in Western Taiwan Basin. Applied Mechanics and Materials, 752, 1275-1279.
32. Tuller, M., Or, D., & Hillel, D. (2004). Retention of water in soil and the soil water characteristic curve. Encyclopedia of Soils in the Environment, 4, 278-289.
33. Van Genuchten, M. T. (1980). A closed?form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898.
34. Yeh, G. T. G., & Tsai, C. H. P. (2015). HYDROGEOCHEM 7.1.
35. Yu, C. W., Chiao, C. H., Hwang, L. T., Yang, W. H., & Yang, M. W. (2014). A pilot 3000m drilling for characterizing a candidate deep saline aquifer in western Taiwan. Energy Procedia, 63, 5071-5082.
36. Yu, C. W., Lei, S. C., Chiao, C. H., Hwang, L. T., Yang, W. H., & Yang, M. W. (2017). Injection risk assessment for intra?formational seal geological model in a carbon sequestration application in Taiwan. Greenhouse Gases: Science and Technology, 7(2), 225-240.
37. Zhang, L., Yang, Q., Zhang, S., Shan, L., Jiang, Q., & Sun, M. (2024). Enhanced CO2 storage efficiency due to the impact of faults on CO2 migration in an interbedded saline aquifer. International Journal of Greenhouse Gas Control, 133, 104104.
38. Zhang, L., Zhang, S., Jiang, W., Wang, Z., Li, J., & Bian, Y. (2018b). A mechanism of fluid exchange associated to CO2 leakage along activated fault during geologic storage. Energy, 165, 1178-1190.
指導教授 陳瑞昇(Jui-Sheng Chen) 審核日期 2025-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明