博碩士論文 111326015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.136.23.252
姓名 廖書瑜(Shu-Yu Liao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 上流式硫擔體固定床反應槽去除水中硝酸鹽之研究
(A study of upflow sulfur – packed reactor for nitrate removal)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
★ 活性污泥異營與自營脫硝 反應動力特性之研究★ 沼渣施用對土壤及滲出水之重金屬成份影響分析
★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估
★ 以低亞硫酸鈉進行自營性脫硝反應之可行性研究★ 污泥脫水濾液無機物成分之結垢潛勢研究
★ 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響★ 以海水提升流體化床磷酸銨鎂結晶 之可行性研究
★ 超音波水解生物污泥機制探討★ 生物除氮程序(MLE Process)效能評估及污泥活性探討
★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討★ 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究
★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討★ 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-10-31以後開放)
摘要(中) 由於水中的含氮污染物是目前最受到關切的污染物之一,其過度排放會對環境造成污染且對人體會造成危害。而台灣民眾環保意識逐漸抬頭,目前我國政府制定法規標準,對於新建造之污水處理廠有較嚴格之標準,且對已建造之污水處理廠排放標準也逐漸採用更高標準的放流水水質管制。目前台灣的污水處理廠大多都是異營脫硝,但在處理C/N 比值較低之污水,脫硝效率不佳,因此,自營脫硝被認為可以替代異營脫硝之反應,因為自營性微生物是利用無機性之電子供體,不需額外添加有機物且產生污泥量較低。
本研究選擇了硫磺 (S0) 作為電子供體,硫磺顆粒不僅可作為電子供體,亦可以當作擔體讓微生物在上面生長形成生物膜。在馴養階段,由於水溶性的硫代硫酸鹽相較固體的元素硫更容易被細菌利用,因此添加硫代硫酸鹽加速硫自營性脫硝菌的生長,經過 90 天成功馴養出硫自營性脫硝菌。
之後,以硫磺 (S0) 作為反應器唯一電子供體的條件下,探討最佳體積硝酸鹽氮負荷,在水力停留時間 1.48 hr,體積硝酸鹽氮負荷為 709.9 g NO3--N/m3·d 時,脫硝率為 60.9±7.6%。因此,以延長水力停留時間至 1.85 hr,降低硝酸鹽氮體積負荷至 567.8 g NO3--N/m3·d,脫硝效率達 80 %。為了評估元素硫脫硝系統之實際應用可行性,因此模擬RO濃排水作為進流水,由於進流水中之難分解有機物可被異營菌利用,作為脫硝之電子供體,此階段為完全脫硝,脫硝率為100%。此外,在各階段硫自營脫硝反應器中,實際硫酸鹽生成量低於理論硫酸鹽生成量,約理論值 76-78% 左右,由於硫酸鹽的生成是硫自營脫硝的缺點,若能減少硫酸鹽生成量是一項潛在的優勢。
反應器從Start-up II-ii 至 Stage III-ii階段,電子供體從元素硫及額外添加的硫代硫酸鹽至元素硫為唯一的供體,Thiobacillus 的相對豐度有逐漸遞減的趨勢;而Sulfurimonas 的相對豐度逐漸遞增,因此,本研究推測 Thiobacillus 似乎傾向於利用硫代硫酸鹽;而Sulfurimonas傾向於利用元素硫。
摘要(英) Due to the fact that nitrogen pollutants in water are currently one of the most concerning contaminants, their excessive discharge can lead to environmental pollution and harm to human health. As environmental awareness gradually increases among the public in Taiwan, the government has established regulations and standards, setting stricter requirements for newly constructed wastewater treatment plants, and gradually applying higher discharge standards for already established plants. Most of Taiwan′s wastewater treatment plants currently use heterotrophic denitrification. However, for wastewater with a low C/N ratio, the denitrification efficiency is poor. Therefore, autotrophic denitrification is considered a potential replacement for heterotrophic denitrification, as autotrophic microorganisms use inorganic electron donors, eliminating the need for additional organic substances and producing less sludge.
This study selected sulfur (S0) as the electron donor. Sulfur granules not only serve as an electron donor but also as a carrier for microorganisms to grow on, forming a biofilm. During the acclimation phase, as water-soluble thiosulfate is more easily utilized by bacteria compared to solid elemental sulfur, thiosulfate was added to accelerate the growth of sulfur-oxidizing autotrophic denitrifying bacteria. After 90 days, sulfur autotrophic denitrifying bacteria were successfully cultivated.
Subsequently, using sulfur (S0) as the sole electron donor in the reactor, the optimal volumetric nitrate-nitrogen load was explored. With a hydraulic retention time of 1.48 hours and a volumetric nitrate-nitrogen load of 709.9 g NO??-N/m3·d, the denitrification rate was 60.9±7.6%. Therefore, by extending the hydraulic retention time to 1.85 hours and reducing the nitrate-nitrogen volumetric load to 567.8 g NO??-N/m3·d, the denitrification efficiency reached 80%. To evaluate the practical feasibility of the elemental sulfur denitrification system, RO concentrate was simulated as influent. Since the recalcitrant organic matter in the influent can be utilized by heterotrophic bacteria as an electron donor for denitrification, this phase achieved complete denitrification with a 100% denitrification rate.

Additionally, in the sulfur autotrophic denitrification reactor at each phase, the actual sulfate production was lower than the theoretical sulfate production, approximately 76-78% of the theoretical value. Since sulfate production is a disadvantage of sulfur autotrophic denitrification, reducing sulfate production could be a potential advantage.
From the Start-up II-ii to the Stage III-ii phase, as the electron donor transitioned from elemental sulfur and additional thiosulfate to elemental sulfur as the sole donor, the relative abundance of Thiobacillus showed a decreasing trend, while the relative abundance of Sulfurimonas gradually increased. Therefore, this study speculates that Thiobacillus seems to prefer utilizing thiosulfate, while Sulfurimonas tends to use elemental sulfur.
關鍵字(中) ★ 自營性脫硝
★ 元素硫
★ 氮負荷
★ 硫擔體
★ RO 濃排水
關鍵字(英) ★ Autotrophic Denitrification
★ Elemental Sulfur
★ Nitrogen Loading
★ Sulfur Carrier
★ RO reject water
論文目次 摘要 ii
Abstract iii
圖摘要 v
圖目錄 ix
第一章 前言 1
1.1研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 氮循環 3
2.2 硝化作用 5
2.3 脫硝作用 6
2.3.1異營性脫硝作用 6
2.3.2自營性脫硝作用 8
2.4技術影響因子 18
2.4.1 溶氧 (dissolved oxygen, DO) 18
2.4.2 pH 20
2.4.3氧化還原電位 ORP 22
2.4.4 溫度 23
2.5 硫擔體 24
2.6 逆滲透處理後的濃排水 (Reverse Osmosis Reject, ROR) 26
第三章 研究方法 27
3.1實驗架構 27
3.2反應程序設計 29
3.2.1程序設計理念 29
3.2.2基本試驗參數與試驗規劃 32
3.3實驗流程 34
3.3.1自營脫硝污泥馴養 34
3.3.2連續式自營脫硝實驗 37
3.4 實驗材料、設備與分析方法 44
3.4.1實驗設備 44
3.4.2實驗材料 45
3.4.3樣品保存與分析方法 46
第四章 結果與討論 47
4.1 硫自營性脫硝長期試驗 47
4.1.1長期試驗反應特性 47
4.1.2反應器不同高度物質濃度變化 64
4.2各階段脫硝貢獻 67
4.3各階段脫硝特性探討 72
4.4生物菌相分析 73
4.5硫擔體 75
4.5.1比表面積 75
4.5.2顆粒型態變化 75
4.5.3擔體生物膜 82
4.6經濟成本 83
4.6.1硫磺使用量、鹼度消耗量和污泥產量 83
4.6.2操作維護成本 85
第五章 結論與建議 86
5.1結論 86
5.2建議 87
參考文獻 88
附錄 96
一、硫自營脫硝實際反應式 96
二、導電度 97
參考文獻 Adams, C. A., Warnes, G. M., & Nicholas, D. J. D. (1971, 1971/05/12/). A sulphite-dependent nitrate reductase from Thiobacillus denitrificans. Biochimica et Biophysica Acta (BBA) - Enzymology, 235(2), 398-406. https://doi.org/https://doi.org/10.1016/0005-2744(71)90220-8

Al-Hazmi, H. E., Hassan, G. K., Maktabifard, M., Grubba, D., Majtacz, J., & Makinia, J. (2022, Dec). Integrating conventional nitrogen removal with anammox in wastewater treatment systems: Microbial metabolism, sustainability and challenges. Environ Res, 215(Pt 3), 114432. https://doi.org/10.1016/j.envres.2022.114432

Amand, L., & Carlsson, B. (2012). Optimal aeration control in a nitrifying activated sludge process. Water Research, 46(7), 2101-2110.

Baeseman, J., Smith, R., & Silverstein, J. (2006). Denitrification potential in stream sediments impacted by acid mine drainage: effects of pH, various electron donors, and iron. Microbial ecology, 51, 232-241.

Cao, X., Zhou, X., Xue, M., Chen, J., & Li, S. (2021, 2021/10/25/). Evaluation of nitrogen removal and N2O emission in a novel anammox coupled with sulfite-driven autotrophic denitrification system: Influence of pH. Journal of Cleaner Production, 321, 128984. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.128984

Cardoso, R. B., Sierra-Alvarez, R., Rowlette, P., Flores, E. R., Gomez, J., & Field, J. A. (2006, Dec 20). Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng, 95(6), 1148-1157. https://doi.org/10.1002/bit.21084

Chang, M., Liang, B., Zhang, K., Wang, Y., Jin, D., Zhang, Q., Hao, L., & Zhu, T. (2022). Simultaneous shortcut nitrification and denitrification in a hybrid membrane aerated biofilms reactor (H-MBfR) for nitrogen removal from low COD/N wastewater. Water Research, 211, 118027.

Chen, H., Hu, H.-Y., Chen, Q.-Q., Shi, M.-L., & Jin, R.-C. (2016, 2016/07/01/). Successful start-up of the anammox process: Influence of the seeding strategy on performance and granule properties. Bioresource Technology, 211, 594-602. https://doi.org/https://doi.org/10.1016/j.biortech.2016.03.139

Christianson, L. E., Lepine, C., Sharrer, K. L., & Summerfelt, S. T. (2016, 2016/11/15/). Denitrifying bioreactor clogging potential during wastewater treatment. Water Research, 105, 147-156. https://doi.org/https://doi.org/10.1016/j.watres.2016.08.067

Di Capua, F., Ahoranta, S. H., Papirio, S., Lens, P. N. L., & Esposito, G. (2016, 2016/10/01/). Impacts of sulfur source and temperature on sulfur-driven denitrification by pure and mixed cultures of Thiobacillus. Process Biochemistry, 51(10), 1576-1584. https://doi.org/https://doi.org/10.1016/j.procbio.2016.06.010

Di Capua, F., Pirozzi, F., Lens, P. N., & Esposito, G. (2019a). Electron donors for autotrophic denitrification. Chemical Engineering Journal, 362, 922-937.

Di Capua, F., Pirozzi, F., Lens, P. N. L., & Esposito, G. (2019b, 2019/04/15/). Electron donors for autotrophic denitrification. Chemical Engineering Journal, 362, 922-937. https://doi.org/https://doi.org/10.1016/j.cej.2019.01.069

Ding, M., & Zeng, H. (2022, 2022/06/15/). A bibliometric analysis of research progress in sulfate-rich wastewater pollution control technology. Ecotoxicology and Environmental Safety, 238, 113626. https://doi.org/https://doi.org/10.1016/j.ecoenv.2022.113626

Dong, H., Sun, Y.-L., Sun, Q., Zhang, X.-N., Wang, H.-C., Wang, A.-J., & Cheng, H.-Y. (2023, 2023/01/01/). Effect of sulfur particle morphology on the performance of element sulfur-based denitrification packed-bed reactor. Bioresource Technology, 367, 128238. https://doi.org/https://doi.org/10.1016/j.biortech.2022.128238

dos Santos, C. E. D., de Bello Solcia Guerrero, R., de Godoi, L. A. G., Foresti, E., & Damianovic, M. H. R. Z. (2018). Dynamics of the nitrification and sulfide?driven autotrophic denitrification processes in a single reactor using oxidation–reduction potential as an indicator of the process effectiveness. Journal of Chemical Technology & Biotechnology, 93(12), 3483-3491.

Gomez, M. A., Hontoria, E., & Gonzalez-Lopez, J. (2002, 2002/03/29/). Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter. Journal of Hazardous Materials, 90(3), 267-278. https://doi.org/https://doi.org/10.1016/S0304-3894(01)00353-3

Guo, G., Ekama, G. A., Wang, Y., Dai, J., Biswal, B. K., Chen, G., & Wu, D. (2019, 2019/08/01/). Advances in sulfur conversion-associated enhanced biological phosphorus removal in sulfate-rich wastewater treatment: A review. Bioresource Technology, 285, 121303. https://doi.org/https://doi.org/10.1016/j.biortech.2019.03.142

Hao, T.-w., Xiang, P.-y., Mackey, H. R., Chi, K., Lu, H., Chui, H.-k., van Loosdrecht, M. C. M., & Chen, G.-H. (2014, 2014/11/15/). A review of biological sulfate conversions in wastewater treatment. Water Research, 65, 1-21. https://doi.org/https://doi.org/10.1016/j.watres.2014.06.043

Hong, M., Yun, Y.-M., Lee, T.-J., Park, N.-S., Ahn, Y., Junge, S. P., & Hwang, Y. (2020). Denitrification performance and microbial community variation during reverse osmosis concentrate treatment by sulfur denitrification process. Desalination and Water Treatment, 183, 54-62. https://doi.org/10.5004/dwt.2020.25250

Huang, S., Zheng, Z., Wei, Q., Han, I., & Jaffe, P. R. (2019, Dec). Performance of sulfur-based autotrophic denitrification and denitrifiers for wastewater treatment under acidic conditions. Bioresour Technol, 294, 122176. https://doi.org/10.1016/j.biortech.2019.122176

Konneke, M., Bernhard, A. E., de La Torre, J. R., Walker, C. B., Waterbury, J. B., & Stahl, D. A. (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058), 543-546.

Kampschreur, M. J., Temmink, H., Kleerebezem, R., Jetten, M. S. M., & van Loosdrecht, M. C. M. (2009, 2009/09/01/). Nitrous oxide emission during wastewater treatment. Water Research, 43(17), 4093-4103. https://doi.org/https://doi.org/10.1016/j.watres.2009.03.001

Kelly, D. P., & Wood, A. P. (2000). Confirmation of Thiobacillus denitrificans as a species of the genus Thiobacillus, in the beta-subclass of the Proteobacteria, with strain NCIMB 9548 as the type strain. International journal of systematic and evolutionary microbiology, 50(2), 547-550.

Kim, H.-R., Lee, I.-S., & Bae, J.-H. (2004, 2004/07/30/). Performance of a sulphur-utilizing fluidized bed reactor for post-denitrification. Process Biochemistry, 39(11), 1591-1597. https://doi.org/https://doi.org/10.1016/j.procbio.2003.07.004

Koenig, A., & Liu, L. H. (2001). - Microbial aspects of autotrophic denitrification of wastewaters. In T. Matsuo, K. Hanaki, S. Takizawa, & H. Satoh (Eds.), Advances in Water and Wastewater Treatment Technology (pp. 217-226). Elsevier Science B.V. https://doi.org/https://doi.org/10.1016/B978-044450563-7/50204-3

Koenig, A., & Liu, L. H. (2002, 2002/10/23/). Use of limestone for pH control in autotrophic denitrification: continuous flow experiments in pilot-scale packed bed reactors. Journal of Biotechnology, 99(2), 161-171. https://doi.org/https://doi.org/10.1016/S0168-1656(02)00183-9

Kostrytsia, A., Papirio, S., Frunzo, L., Mattei, M. R., Porca, E., Collins, G., Lens, P. N. L., & Esposito, G. (2018, 2018/04/01/). Elemental sulfur-based autotrophic denitrification and denitritation: microbially catalyzed sulfur hydrolysis and nitrogen conversions. Journal of Environmental Management, 211, 313-322. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.01.064

Lee, K. C., & Rittmann, B. E. (2003, Apr). Effects of pH and precipitation on autohydrogenotrophic denitrification using the hollow-fiber membrane-biofilm reactor. Water Res, 37(7), 1551-1556. https://doi.org/10.1016/S0043-1354(02)00519-5

Li, H., Liu, Z., Tan, C., Zhang, X., Zhang, Z., Bai, X., Wu, L., & Yang, H. (2022, 2022/04/01/). Efficient nitrogen removal from stormwater runoff by bioretention system: The construction of plant carbon source-based heterotrophic and sulfur autotrophic denitrification process. Bioresource Technology, 349, 126803. https://doi.org/https://doi.org/10.1016/j.biortech.2022.126803

Li, M., Duan, R., Hao, W., Li, Q., Arslan, M., Liu, P., Qi, X., Huang, X., El-Din, M. G., & Liang, P. (2020, 2020/11/20/). High-rate nitrogen removal from carbon limited wastewater using sulfur-based constructed wetland: Impact of sulfur sources. Science of The Total Environment, 744, 140969. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.140969

Li, X., Yu, Y., Fan, H., & Tang, C. (2022, 2022/05/01/). Intense denitrification and sewage effluent result in enriched 15N in N2O from urban polluted rivers. Journal of Hydrology, 608, 127631. https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.127631

Li, Y., Liu, L., & Wang, H. (2022, 2022/03/25/). Mixotrophic denitrification for enhancing nitrogen removal of municipal tailwater: Contribution of heterotrophic/sulfur autotrophic denitrification and bacterial community. Science of The Total Environment, 814, 151940. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.151940

Lu, Z., Zhao, J., Wu, Z., Guo, T., Wang, M., Li, X., Wan, D., Du, Z., & He, Q. (2024, 2024/10/01/). Nitrogen removal performance and functional microbial communities evolution in a continuous up-flow fixed bed anammox system. Journal of Environmental Chemical Engineering, 12(5), 113913. https://doi.org/https://doi.org/10.1016/j.jece.2024.113913

Ma, J., Wu, H., Wang, Y., Qiu, G., Fu, B., Wu, C., & Wei, C. (2019, 2019/10/01/). Material inter-recycling for advanced nitrogen and residual COD removal from bio-treated coking wastewater through autotrophic denitrification. Bioresource Technology, 289, 121616. https://doi.org/https://doi.org/10.1016/j.biortech.2019.121616

Mo, H., Oleszkiewicz, J., Cicek, N., & Rezania, B. (2005). Incorporating membrane gas diffusion into a membrane bioreactor for hydrogenotrophic denitrification of groundwater. Water Science and Technology, 51(6-7), 357-364.

Moon, H. S., Ahn, K. H., Lee, S., Nam, K., & Kim, J. Y. (2004, 2004/06/01/). Use of autotrophic sulfur-oxidizers to remove nitrate from bank filtrate in a permeable reactive barrier system. Environmental Pollution, 129(3), 499-507. https://doi.org/https://doi.org/10.1016/j.envpol.2003.11.004

Moraes, B. d. S., Souza, T., & Foresti, E. (2012). Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochemistry, 47(9), 1395-1401.

Moraes, B. S., Souza, T. S. O., & Foresti, E. (2012, 2012/09/01/). Effect of sulfide concentration on autotrophic denitrification from nitrate and nitrite in vertical fixed-bed reactors. Process Biochemistry, 47(9), 1395-1401. https://doi.org/https://doi.org/10.1016/j.procbio.2012.05.008

Nakicenovic, N., Alcamo, J., Davis, G., Vries, B. d., Fenhann, J., Gaffin, S., Gregory, K., Grubler, A., Jung, T. Y., & Kram, T. (2000). Special report on emissions scenarios.

Oh, J., & Silverstein, J. (1999, 1999/06/01/). Oxygen inhibition of activated sludge denitrification. Water Research, 33(8), 1925-1937. https://doi.org/https://doi.org/10.1016/S0043-1354(98)00365-0

Oh, S.-E., Kim, K.-S., Choi, H.-C., Cho, J., & Kim, I. (2000). Kinetics and physiological characteristics of autotrophic dentrification by denitrifying sulfur bacteria. Water Science and Technology, 42(3-4), 59-68.

Oh, S., Kim, K., Choi, H., & Kim, I. (1999). Kinetics and Physiology of Autotrophic Denitrification by Denitrifying Sulfur Bacteria; Ouyang, CF, Lo, SL, Cheng, SS, Eds. Conference Preprint Asian Waterqual,

Park, H.-D., Wells, G. F., Bae, H., Criddle, C. S., & Francis, C. A. (2006). Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied and environmental microbiology, 72(8), 5643-5647.

Park, S., Bae, W., Chung, J., & Baek, S.-C. (2007, 2007/12/01/). Empirical model of the pH dependence of the maximum specific nitrification rate. Process Biochemistry, 42(12), 1671-1676. https://doi.org/https://doi.org/10.1016/j.procbio.2007.09.010

Parker, D. S. (1975). Process Design Manual for Nitrogen Control.

Qambrani, N. A., & Oh, S.-E. (2013). Effect of dissolved oxygen tension and agitation rates on sulfur-utilizing autotrophic denitrification: batch tests. Applied biochemistry and biotechnology, 169, 181-191.

Rezvani, F., Sarrafzadeh, M.-H., Ebrahimi, S., & Oh, H.-M. (2019). Nitrate removal from drinking water with a focus on biological methods: a review. Environmental Science and Pollution Research, 26(2), 1124-1141.

Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and applications. (No Title).

Sabba, F., Picioreanu, C., Boltz, J. P., & Nerenberg, R. (2016). Predicting N2O emissions from nitrifying and denitrifying biofilms: a modeling study. Water Science and Technology, 75(3), 530-538. https://doi.org/10.2166/wst.2016.484

Sabba, F., Picioreanu, C., & Nerenberg, R. (2017). Mechanisms of nitrous oxide (N2O) formation and reduction in denitrifying biofilms. Biotechnology and Bioengineering, 114(12), 2753-2761. https://doi.org/https://doi.org/10.1002/bit.26399

Sahinkaya, E., Kilic, A., & Duygulu, B. (2014, 2014/09/01/). Pilot and full scale applications of sulfur-based autotrophic denitrification process for nitrate removal from activated sludge process effluent. Water Research, 60, 210-217. https://doi.org/https://doi.org/10.1016/j.watres.2014.04.052

Schreiber, F., Wunderlin, P., Udert, K. M., & Wells, G. F. J. F. i. m. (2012). Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies. 3, 372.

Shao, M. F., Zhang, T., & Fang, H. H. (2010, Nov). Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications. Appl Microbiol Biotechnol, 88(5), 1027-1042. https://doi.org/10.1007/s00253-010-2847-1

Show, K.-Y., Lee, D.-J., & Pan, X. (2013, 2013/07/01/). Simultaneous biological removal of nitrogen–sulfur–carbon: Recent advances and challenges. Biotechnology Advances, 31(4), 409-420. https://doi.org/https://doi.org/10.1016/j.biotechadv.2012.12.006

Sierra-Alvarez, R., Beristain-Cardoso, R., Salazar, M., Gomez, J., Razo-Flores, E., & Field, J. A. (2007, 2007/03/01/). Chemolithotrophic denitrification with elemental sulfur for groundwater treatment. Water Research, 41(6), 1253-1262. https://doi.org/https://doi.org/10.1016/j.watres.2006.12.039

Soares, M. I. M. (2002, 2002/03/01/). Denitrification of groundwater with elemental sulfur. Water Research, 36(5), 1392-1395. https://doi.org/https://doi.org/10.1016/S0043-1354(01)00326-8

Song, W., Liu, X., Zheng, T., & Yang, J. (2020). A review of recharge and clogging in sandstone aquifer. Geothermics, 87, 101857.

Sun, Y.-L., Li, Z.-R., Zhang, X.-N., Dong, H., Qian, Z.-M., Yi, S., Zhuang, W.-Q., Cheng, H.-Y., & Wang, A.-J. (2023, 2023/08/15/). Design and operation insights concerning a pilot-scale S0-driven autotrophic denitrification packed-bed process. Chemical Engineering Journal, 470, 144396. https://doi.org/https://doi.org/10.1016/j.cej.2023.144396

Tian, T., & Yu, H. Q. (2020, Mar). Denitrification with non-organic electron donor for treating low C/N ratio wastewaters. Bioresour Technol, 299, 122686. https://doi.org/10.1016/j.biortech.2019.122686

Vishniac, W., & Santer, M. (1957). The thiobacilli. Bacteriological reviews, 21(3), 195-213.

Vo, T.-K.-Q., Kang, S., An, S.-A., & Kim, H.-S. (2021). Exploring critical factors influencing on autotrophic denitrification by elemental sulfur-based carriers in upflow packed-bed bioreactors. Journal of Water Process Engineering, 40. https://doi.org/10.1016/j.jwpe.2020.101866

Wang, F., & Chapman, P. M. (1999). Biological implications of sulfide in sediment—a review focusing on sediment toxicity. Environmental Toxicology and Chemistry: An International Journal, 18(11), 2526-2532.

Wang, H., Dong, W., Li, T., & Liu, T. (2015, 2015/08/01/). A modified BAF system configuring synergistic denitrification and chemical phosphorus precipitation: Examination on pollutants removal and clogging development. Bioresource Technology, 189, 44-52. https://doi.org/https://doi.org/10.1016/j.biortech.2015.03.132

Wang, J.-J., Huang, B.-C., Li, J., & Jin, R.-C. (2020, 2020/10/01/). Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal. Chinese Chemical Letters, 31(10), 2567-2574. https://doi.org/https://doi.org/10.1016/j.cclet.2020.07.036

Wang, T., Li, X., Wang, H., Xue, G., Zhou, M., Ran, X., & Wang, Y. (2023, 2023/10/15/). Sulfur autotrophic denitrification as an efficient nitrogen removals method for wastewater treatment towards lower organic requirement: A review. Water Research, 245, 120569. https://doi.org/https://doi.org/10.1016/j.watres.2023.120569

Winkler, M. H., Kleerebezem, R., Strous, M., Chandran, K., & Van Loosdrecht, M. (2013). Factors influencing the density of aerobic granular sludge. Applied microbiology and biotechnology, 97, 7459-7468.

Xiao, J., Yue, Q., Gao, B., Sun, Y., Kong, J., Gao, Y., Li, Q., & Wang, Y. (2014, 2014/10/01/). Performance of activated carbon/nanoscale zero-valent iron for removal of trihalomethanes (THMs) at infinitesimal concentration in drinking water. Chemical Engineering Journal, 253, 63-72. https://doi.org/https://doi.org/10.1016/j.cej.2014.05.030

Xu, G., Yin, F., Chen, S., Xu, Y., & Yu, H.-Q. (2016, 2016/03/15/). Mathematical modeling of autotrophic denitrification (AD) process with sulphide as electron donor. Water Research, 91, 225-234. https://doi.org/https://doi.org/10.1016/j.watres.2016.01.011

Xu, Y., Chen, N., Feng, C., Hao, C., & Peng, T. (2016, 2016/12/16). Sulfur-based autotrophic denitrification with eggshell for nitrate-contaminated synthetic groundwater treatment. Environmental Technology, 37(24), 3094-3103. https://doi.org/10.1080/09593330.2016.1176077

Xue, M., Nie, Y., Cao, X., & Zhou, X. (2022, 2022/08/25/). Deciphering the influence of S/N ratio in a sulfite-driven autotrophic denitrification reactor. Science of The Total Environment, 836, 155612. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.155612

Yang, W., Zhao, Q., Lu, H., Ding, Z., Meng, L., & Chen, G.-H. (2016, 2016/03/01/). Sulfide-driven autotrophic denitrification significantly reduces N2O emissions. Water Research, 90, 176-184. https://doi.org/https://doi.org/10.1016/j.watres.2015.12.032

Yuan, Z., Chen, Y., Zhang, M., Qin, Y., Zhang, M., Mao, P., & Yan, Y. (2022, 2022/02/01/). Efficient nitrite accumulation and elemental sulfur recovery in partial sulfide autotrophic denitrification system: Insights of seeding sludge, S/N ratio and flocculation strategy. Chemosphere, 288, 132388. https://doi.org/https://doi.org/10.1016/j.chemosphere.2021.132388

Yue, X., Yu, G., Lu, Y., Liu, Z., Li, Q., Tang, J., & Liu, J. (2018, 2018/04/01/). Effect of dissolved oxygen on nitrogen removal and the microbial community of the completely autotrophic nitrogen removal over nitrite process in a submerged aerated biological filter. Bioresource Technology, 254, 67-74. https://doi.org/https://doi.org/10.1016/j.biortech.2018.01.044

Zeng, H., & Zhang, T. C. (2005, 2005/12/01/). Evaluation of kinetic parameters of a sulfur–limestone autotrophic denitrification biofilm process. Water Research, 39(20), 4941-4952. https://doi.org/https://doi.org/10.1016/j.watres.2005.09.034

Zhang, L., Zhang, Z., Sun, R., Liang, S., Chen, G.-H., & Jiang, F. (2018, 2018/03/01/). Self-accelerating sulfur reduction via polysulfide to realize a high-rate sulfidogenic reactor for wastewater treatment. Water Research, 130, 161-167. https://doi.org/https://doi.org/10.1016/j.watres.2017.11.062

Zhang, T. C., & Lampe, D. G. (1999, 1999/02/01/). Sulfur:limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: batch experiments. Water Research, 33(3), 599-608. https://doi.org/https://doi.org/10.1016/S0043-1354(98)00281-4

Zhang, X.-N., Zhu, L., Li, Z.-R., Sun, Y.-L., Qian, Z.-M., Li, S.-Y., Cheng, H.-Y., & Wang, A.-J. (2022, 2022/07/01/). Thiosulfate as external electron donor accelerating denitrification at low temperature condition in S0–based autotrophic denitrification biofilter. Environmental Research, 210, 113009. https://doi.org/https://doi.org/10.1016/j.envres.2022.113009

Zhou, W., Liu, X., Dong, X., Wang, Z., Yuan, Y., Wang, H., & He, S. (2016, Jun). Sulfur-based autotrophic denitrification from the micro-polluted water. J Environ Sci (China), 44, 180-188. https://doi.org/10.1016/j.jes.2016.01.002

Zhou, W., Sun, Y., Wu, B., Zhang, Y., Huang, M., Miyanaga, T., & Zhang, Z. (2011, 2011/11/01/). Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. Journal of Environmental Sciences, 23(11), 1761-1769. https://doi.org/https://doi.org/10.1016/S1001-0742(10)60635-3

Zou, G., Papirio, S., Lakaniemi, A. M., Ahoranta, S. H., & Puhakka, J. A. (2016, 2016/01/15/). High rate autotrophic denitrification in fluidized-bed biofilm reactors. Chemical Engineering Journal, 284, 1287-1294. https://doi.org/https://doi.org/10.1016/j.cej.2015.09.074
指導教授 莊順興(Shun-Hsing Chuang) 審核日期 2024-10-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明