參考文獻 |
Ai, S., Li, J., Yang, Y., Gao, M., Pan, Z., and Jin, L., "Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO2– K2Cr2O7 system", Analytica Chimica Acta, 509, 237-241(2004).
Badr, I.H., Hassan, H.H., Hamed, E., and Abdel?Aziz, A.M., "Sensitive and green method for determination of chemical oxygen demand using a nano?copper based electrochemical sensor", Electroanalysis, 29, 2401-2409(2017).
Baker, J.R., Milke, M.W., and Mihelcic, J.R., "Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals", Water Research, 33, 327-334(1999).
Bard, A.J., Faulkner, L.R., and White, H.S., "Electrochemical Methods: Fundamentals and Applications", Springer, New York(2001).
Bond, A., "Inorganic Electrochemistry: Theory, Practice and Application by Piero Zanello", University of Siena, Italy(2004).
Capelle, A. and Vooys, F.d., "Activated Carbon. A Fascinating Material", Netherlands (1983).
Carp, O., Huisman, C.L., and Reller, A., "Photo-induced reactivity of titanium dioxide", Progress in Solid State Chemistry, 32, 33-177(2004).
Cesarino, I., Cesarino, V., Moraes, F.C., Ferreira, T.C., Lanza, M.R., Mascaro, L.H., and Machado, S.A., "Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes", Materials Chemistry and Physics, 141, 304-309(2013).
Chen, H., Zhang, J., Chen, Q., Li, J., Li, D., Dong, C., Liu, Y., Zhou, B., Shang, S., and Cai, W., "Assessment of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube array sensor", Analytical Methods, 4, 1790-1796(2012).
Chen, J., Zhang, J., Xian, Y., Ying, X., Liu, M., and Jin, L., "Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research", Water Research, 39, 1340-1346(2005).
Chern, J.-M., and Chien, Y.-W., "Competitive adsorption of benzoic acid and p- nitrophenol onto activated carbon: isotherm and breakthrough curves", Water Research, 37, 2347-2356(2003).
Duan, W., Torras, M., Roig, A., Fernandez-Sanchez, C., and Gich, M., "Composites of porous carbon and copper-based nanoparticles for the electrochemical analysis of chemical oxygen demand", Materials Today Chemistry, 24, 100899(2022).
Elfeky, E.M., Shehata, M.R., Elbashar, Y.H., Barakat, M.H., and El Rouby, W.M., "Developing the sensing features of copper electrodes as an environmental friendly detection tool for chemical oxygen demand", RSC Advances, 12, 4199- 4208(2022).
Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., and Dempsey, J.L., "A practical beginner’s guide to cyclic voltammetry", Journal of Chemical Education, 95, 197-206(2018).
Enache, T.A., and Oliveira-Brett, A.M., "Phenol and para-substituted phenols electrochemical oxidation pathways", Journal of Electroanalytical Chemistry, 655, 9-16(2011).
European Environment Agency, "2008/105/EC - On environmental quality standards in the field of water policy," European Environment Agency, 2008, https://www.eea.europa.eu/policy-documents/2008-105-ec.
Fang, Z., Chen, D., Yan, F., Lv, J., Wang, Y., and Guan, X., "A novel Ni/ZnO/Cu composite electrode with high sensitivity for detection of chemical oxygen demand", Surfaces and Interfaces, 24, 101091(2021).
Gooding, J.J., "Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing", Electrochimica Acta, 50, 3049- 3060(2005).
Guo, X., Li, D., Wan, J., and Yu, X., "Preparation and electrochemical property of TiO2/Nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium", Electrochimica Acta, 180, 957-964(2015).
Harvey, D., "Voltammetric and amperometric methods", Analytical Chemistry 2.1, DePauw University, U.S.A.(2019).
Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., Kominami, H., and Kera, Y., "Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere", Applied Catalysis B: Environmental, 30, 429-436(2001).
Hassan, H.H., Badr, I.H., Abdel-Fatah, H.T., Elfeky, E.M., and Abdel-Aziz, A.M., "Low cost chemical oxygen demand sensor based on electrodeposited nano- copper film", Arabian Journal of Chemistry, 11, 171-180(2018).
Hou, P.-X., Liu, C., and Cheng, H.-M., "Purification of carbon nanotubes", Carbon, 46, 2003-2025(2008).
Huang, X., Zhu, Y., Yang, W., Jiang, A., Jin, X., Zhang, Y., Yan, L., Zhang, G., and Liu, Z., "A self-supported CuO/Cu nanowire electrode as highly efficient sensor for COD measurement", Molecules, 24, 3132(2019).
Hur, J., Lee, B.-M., Lee, T.-H., and Park, D.-H., "Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra", Sensors, 10, 2460-2471(2010).
Iijima, S., "Helical microtubules of graphitic carbon", Nature, 354, 56-58(1991).
Jiang, R., Chai, X.-s., Zhang, C., and Tang, H.-l., "A dual-wavelength spectroscopic method for the low chemical oxygen demand determination", Spectroscopy and Spectral Analysis, 31, 2007-2010(2011).
Jing, T., Zhou, Y., Hao, Q., Zhou, Y., and Mei, S., "A nano-nickel electrochemical sensor for sensitive determination of chemical oxygen demand", Analytical Methods, 4, 1155-1159(2012).
Kabir, H., Zhu, H., Lopez, R., Nicholas, N.W., McIlroy, D.N., Echeverria, E., May, J., and Cheng, I.F., "Electrochemical determination of chemical oxygen demand on functionalized pseudo-graphite electrode", Journal of Electroanalytical Chemistry, 851, 113448(2019).
Kolb, M., Bahadir, M., and Teichgraber, B., "Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate. " , Water Research, 122, 645-654(2017).
Kumaravel, A., and Chandrasekaran, M., "A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion", Journal of Electroanalytical Chemistry, 650, 163-170(2011).
Lambert, J., Ajayan, P., Bernier, P., Planeix, J., Brotons, V., Coq, B., and Castaing, J., "Improving conditions towards isolating single-shell carbon nanotubes", Chemical Physics Letters, 226, 364-371(1994).
Lee, K.-H., Ishikawa, T., McNiven, S., Nomura, Y., Hiratsuka, A., Sasaki, S., Arikawa, Y., and Karube, I., "Evaluation of chemical oxygen demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode", Analytica Chimica Acta, 398, 161- 171(1999).
Li, D., "TiO2 Photocatalytic Degradation of Waste Activated Sludge and Potassium Hydrogen Phthalate in Wastewater for Enhancing Biogas Production", University of Tsukuba, Japan(2013).
Li, J., Tong, Y., Guan, L., Wu, S., and Li, D., "Optimization of COD determination by UV–vis spectroscopy using PLS chemometrics algorithms", 174, 591- 599(2018).
Li, L., Zhang, S., Li, G., and Zhao, H., "Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelectrocatalytic oxidation effect at TiO2 nanostructured electrode", Analytica Chimica Acta, 754, 47-53(2012).
Li, S.X., Zheng, F.Y., Cai, W.L., Han, A.Q., and Xie, Y.K., "Surface modification of nanometer size TiOASC with salicylic acid for photocatalytic degradation of 4- nitrophenol", Journal of Hazardous Materials, 135, 431-436(2006).
Li, X., Lin, D., Lu, K., Chen, X., Yin, S., Li, Y., Zhang, Z., Tang, M., and Chen, G., "Graphene oxide orientated by a magnetic field and application in sensitive detection of chemical oxygen demand", Analytica Chimica Acta, 1122, 31- 38(2020).
Li, X., Shang, Y., Fernandez, C., Pei, T., and Wang, L., "Electrochemical determination of chemical oxygen demand in mixed organic solution by Al/SnO2-TiO2 electrode", International Journal of Electrochemical Science, 16, 211111(2021).
Ma, Y., Tie, Z., Zhou, M., Wang, N., Cao, X., and Xie, Y., "Accurate determination of low-level chemical oxygen demand using a multistep chemical oxidation digestion process for treating drinking water samples", Analytical Methods, 8, 3839-3846(2016).
Mohamad, M., Haq, B.U., Ahmed, R., Shaari, A., Ali, N., and Hussain, R., "A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs", Materials Science in Semiconductor Processing, 31, 405-414(2015).
Merian, E., Anke, M., Ihnat, M., and Stoeppler, M., "Elements and Their Compounds in the Environment. 2nd Edition.", Wiley-VCH Verlag, Weinheim(2004).
Nadjo, L., and Saveant, J., "Linear sweep voltammetry: Kinetic control by charge transfer and/or secondary chemical reactions: I. Formal kinetics", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 48, 113- 145(1973).
O′Sullivan, E.J., and Calvo, E.J., "Reactions at metal oxide electrodes", Comprehensive Chemical Kinetics, Elsevier, (1988).
Pan, B. and Xing, B., "Adsorption mechanisms of organic chemicals on carbon nanotubes", Environmental Science & Technology, 42, 9005-9013(2008).
Park, J. and Eun, C., "Electrochemical behavior and determination of salicylic acid at carbon-fiber electrodes", Electrochimica Acta, 194, 346-356(2016).
Pop, A., Ilinoiu, E., Manea, F., Pisoi, I., and Burtica, G., "Determination of organic pollutants from water by electrochemical methods", Environmental Engineering & Management Journal, 10, (2011).
Punetha, V.D., Rana, S., Yoo, H.J., Chaurasia, A., McLeskey Jr, J.T., Ramasamy, M.S., Sahoo, N.G., and Cho, J.W., "Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene", Progress in Polymer Science, 67, 1-47(2017).
Rice, E.W., Bridgewater, L., and Association, A.P.H., "Standard Methods for the Examination of Water and Wastewater", American Public Health Association(APHA), (2012).
Ross, J.W., DeMars, R.D., and Shain, I., "Analytical applications of hanging mercury drop electrode", Analytical chemistry, 28, 1768-1771(1956).
Sahu, A., Jain, A., and Gulbake, A., "The role of carbon nanotubes in nanobiomedicines", International Journal of Pharmacy and Pharmaceutical Sciences, 9, 235-251(2017).
Saranya, S., Feminus, J.J., Geetha, B., and Deepa, P.N., "Simultaneous detection of glutathione, threonine, and glycine at electrodeposited RuHCF/rGO-modified electrode", Ionics, 25, 5537-5550(2019).
Srinivasan, S., Srinivasan, S., and Bommaraju, T., "Electrochemical Technologies and Applications", Fuel Cells: From Fundamentals to Applications, 93-186(2006).
Su, Y., Li, X., Chen, H., Lv, Y., and Hou, X., "Rapid, sensitive and on-line measurement of chemical oxygen demand by novel optical method based on UV photolysis and chemiluminescence", Microchemical Journal, 87, 56- 61(2007).
Tanaka, K., Capule, M.F., and Hisanaga, T., "Effect of crystallinity of TiO2 on its photocatalytic action", Chemical Physics Letters, 187, 73-76(1991).
Torriero, A.A.J., Luco, J.M., Sereno, L., and Raba, J., "Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid", Talanta, 62, 247-254(2004).
Trang, N.T.H., Ali, Z., and Kang, D.J., "Mesoporous TiO2 spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries", ACS Applied Materials & Interfaces, 7, 3676-3683(2015).
Wang, J., Yin, G.-P., Zhang, J., Wang, Z., and Gao, Y., "High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell", Electrochimica Acta, 52, 7042-7050(2007).
Westbroek, P., and Temmerman, E., "In line measurement of chemical oxygen demand by means of multipulse amperometry at a rotating Pt ring—Pt/PbO2 disc electrode", Analytica Chimica Acta, 437, 95-105(2001).
Wu, J.W., Wang, Q., Umar, A., Sun, S.H., Huang, L., Wang, J.Y., and Gao, Y.S., "Highly sensitive p-nitrophenol chemical sensor based on crystalline alpha- MnO2 nanotubes", New Journal of Chemistry, 38, 4420-4426(2014).
Xie, X.-L., Mai, Y.-W., and Zhou, X.-P., "Dispersion and alignment of carbon nanotubes in polymer matrix: a review", Materials Science and Engineering: R: Reports, 49, 89-112(2005).
Yang, J., Chen, J., Zhou, Y., and Wu, K., "A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand", Sensors and Actuators B: Chemical, 153, 78-82(2011).
Zhang, F.-J., Chen, M.-l., and Oh, W.-c., "Photoelectrocatalytic properties of Ag- CNT/TiO2 composite electrodes for methylene blue degradation", New Carbon Materials, 25, 348-356(2010).
Zhang, J., Zhou, B., Zheng, Q., Li, J., Bai, J., Liu, Y., and Cai, W., "Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array", Water Research, 43, 1986-1992(2009).
Zhang, Z., Chang, X., and Chen, A., "Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO2 electrodes", Sensors and Actuators B: Chemical, 223, 664-670(2016).
Zheng, Q., Zhou, B., Bai, J., Li, L., Jin, Z., Zhang, J., Li, J., Liu, Y., Cai, W., and Zhu, X., "Self?organized TiO2 nanotube array sensor for the determination of chemical oxygen demand", Advanced Materials, 20, 1044-1049(2008).
胡啟章, 「電化學原理與方法」, 五南圖書出版股份有限公司, 台北(2002)
梁昇致, 「利用 TiO2 電極檢測生活污水中 COD 之研究」, 碩士論文, 朝陽科技 大學環境工程與管理系碩士班, 台中(2013).
曾俊豪, 「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」, 博士 論文, 國立成功大學化學工程學系碩博士班, 台南(2009).
曾苓婷, 「利用電化學技術監測污水中 COD 之研究」, 碩士論文, 朝陽科技大學 環境工程與管理系碩士班, 台中(2011).
楊藏嶽, and 楊慶成, 「中國電機工程師手冊第二十二篇-電化學及應用」, 中國 電機工程學會, 台灣(1992).
鄭惟文, 「以釩改質二氧化鈦電觸媒降解染料 AR27 之研究」, 碩士論文, 國立 中興大學環境工程學系所, 台中(2013).
羅弘駿, 「利用二氧化鈦/活性碳電極進行電容去離子處理鄰苯二甲酸氫鉀之研 究」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2018).
黃韻寧, 「以二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行 COD 之伏安 法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2015).
盧怡君, 「以去官能基化二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行 COD 之伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園 (2015).
張佳琦, 「運用氧化石墨烯/單壁奈米碳管/碲化鉍修飾玻璃碳電極進行水中鎘之方 波陽極析出伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃 園(2019).
陳凱欣, 「以溶膠凝膠法製備MWCNTs/TiO2 及其光催化特性」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2013). |