博碩士論文 109326021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:18.191.139.131
姓名 蕭博謙(Po-Chien Hsiao)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 伏安法測定雙物種系統之需氧量
(Voltammetric Analysis of Oxygen Demand in Dual-Compounds System)
相關論文
★ 偏光板TAC製程節水研究★ 應用碳足跡盤查於節能減碳策略之研究-以某太陽能多晶矽片製造廠為例
★ 不同形態擔體對流動式接觸床 (MBBR)去除氨氮效率之探討★ 以減壓蒸發法回收光阻廢液之可行性探討-以某化學材料製造廠為例
★ 行為安全執行策略探討-以某紡絲事業單位為例★ 以環保溶劑取代甲苯應用於工業用接著劑可行性之研究
★ AO+MBR+RO進行生活污水廠水再生最佳調配比例之研究-以鳳山溪污水處理廠為例★ 二氧化矽與氧化鋁廢水混合混凝處理之研究
★ 利用碳氣凝膠紙電吸附於二氯化銅水溶液現象之探討★ 非接觸式光學監測混凝系統技術之發展
★ 以光學影像連續監測銅廢水化學沉降之技術發展★ 以膠羽影像光訊號分析(FICA)技術監測高嶺土之化學混凝
★ 膠羽影像色譜分析技術 監測混凝程序之開發‒以地表原水為例★ 石門水庫分層取水對於前加氯與混凝成效之影響
★ 石門水庫分層取水對於平鎮淨水廠快濾池堵塞成因分析★ 地表水中氨氮之生物急毒性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2029-10-18以後開放)
摘要(中) 化學需氧量(COD)為環境水體有機污染物含量及水質監測的重要指標之一。 然而,傳統COD 分析方法存在諸多缺點,例如:分析時間長、氧化能力受限、高 毒性試劑的二次污染等。電化學方法相比於傳統方法具有反應迅速、成本低廉、 靈敏度高、選擇性佳以及對環境友善等優點,使其在 COD 分析中,尤其是現場 監測和分析時,逐漸受到重視。
本研究透過溶膠-凝膠法製備二氧化碳/單壁奈米碳管複合材料並用於修飾電 極,以線性掃描伏安法(LSV)對水樣進行 COD 分析,水樣分為單物種水樣及雙物 種水樣。單物種水樣由鄰苯二甲酸氫鉀、對-硝基苯酚、甘胺酸、水楊酸等有機物 所配製而成;雙物種水樣則由前述四種有機物彼此組合,在不同理論需氧量比例 的情況下,探討有機物在電極上的交互作用。結果顯示,製備的電極在單物種水 樣中,在 10-100 mg/L 的濃度區間內,對所有的有機物均表現出良好的相關性; 在雙物種系統中,KHP+SA 溶液的結果顯示,在+0.3 V 處可能存競爭作用,減弱 了SA 二聚體的氧化反應,並增強了SA 在+0.7 V 及+1.1 V 的氧化電流。在KHP+4- NP 溶液中,由於 KHP 的電催化氧化電流減少,因此推估 4-NP 抑制了 KHP 在電 極表面的吸附,而芳香族間的協同作用使得4-NP 的氧化電流增加。此外,4-NP+SA 溶液的結果顯示,兩物種間可能存在競爭作用,使得 4-NP 的氧化電流升高,並 減弱了SA 的氧化。最後,SA+甘胺酸的溶液顯示,兩物種間可能存在競爭作用,導致兩者的反應電流均減少。
摘要(英) Chemical oxygen demand (COD) is a critical indicator for assessing the organic pollutant levels in environmental water bodies and is widely used for water quality monitoring. However, traditional COD analysis methods have several drawbacks, including time-consuming, limited oxidation capability, and secondary pollution due to the use of highly toxic reagents. In contrast, electrochemical methods offer several advantages, such as rapid analysis, low cost, high sensitivity, excellent selectivity, and environmental friendliness, making them increasingly attractive for COD analysis, especially for on-site monitoring and analysis.
In this study, TiO2/SWCNT nanocomposites were synthesized using the sol-gel method and utilized to modify electrodes for COD analysis using linear sweep voltammetry (LSV). Both single-species and dual-species water samples were investigated. The single-species samples were prepared using potassium hydrogen phthalate (KHP), 4-nitrophenol (4-NP), glycine, and salicylic acid (SA), while the dual- species samples were composed of two compounds mentioned above. The study discussed the interactions between organic species on the electrode under varying theoretical oxygen demand (ThOD) ratios.
The results demonstrated that the prepared electrodes exhibited excellent correlation for all organic compounds in single-species systems in a concentration range of 10-100 mg/L. In dual-species systems, the KHP+SA mixture revealed potential competitive interactions at +0.3 V, weakening the oxidation of SA dimers while increasing the oxidation currents of SA at +0.7 V and +1.1 V. For the KHP+4-NP mixture, the oxidation current of KHP was reduced and that of 4-NP enhanced, which suggested that 4-NP inhibited the adsorption of KHP onto the electrode surface, and there might be synergistic effects between 4-NP aromatic groups. Additionally, there was competition between 4-NP and SA in the mixture, which lead to an increased oxidation current of 4-NP and a decrease in the oxidation current of SA. Finally, both oxidation currents of SA and glycine reduced after they were mixed, which suggested that there might be competition.
關鍵字(中) ★ 化學需氧量
★ 線性掃描伏安法
★ 二氧化鈦
★ 單壁奈米碳管
★ 單物種分析
★ 雙物種分析
關鍵字(英) ★ chemical oxygen demand (COD)
★ linear sweep voltammetry (LSV)
★ titanium dioxide
★ single-walled carbon nanotube
★ mono-species analysis
★ dual-species analysis
論文目次 摘要 i
Abstract iii
致謝 v
Contents vii
List of Figures ix
List of Tables xiii
Chapter 1. Introduction 1
1.1 Background 1
1.2 Objectives 3
Chapter 2. Literature Reviews 6
2.1 Detection method of organic compounds 6
2.2 Electrode modified materials for COD analysis 9
2.3 Electrochemical technology 17
2.4 Voltammetric analysis of organic compounds and COD 27
Chapter 3. Materials and Methods 33
3.1 Instrumentation 33
3.2 Materials and Chemicals 33
3.3 Modification of working electrode (TiO2/SWCNT/GCE) 35
3.4 Electrochemical performance analysis 38
3.5 Data processing 42
Chapter 4. Results and Discussion 44
4.1 Mono-species systems: 44
4.2 Dual-species systems: 50
4.3 Further discussion of 4-NP vs. SA 74
4.4 Further discussion of KHP vs. SA 84
Chapter 5. Conclusions and Suggestions 90
5.1 Conclusions 90
5.2 Suggestions 91
Reference 92
Appendix 99
參考文獻 Ai, S., Li, J., Yang, Y., Gao, M., Pan, Z., and Jin, L., "Study on photocatalytic oxidation for determination of chemical oxygen demand using a nano-TiO2– K2Cr2O7 system", Analytica Chimica Acta, 509, 237-241(2004).
Badr, I.H., Hassan, H.H., Hamed, E., and Abdel?Aziz, A.M., "Sensitive and green method for determination of chemical oxygen demand using a nano?copper based electrochemical sensor", Electroanalysis, 29, 2401-2409(2017).
Baker, J.R., Milke, M.W., and Mihelcic, J.R., "Relationship between chemical and theoretical oxygen demand for specific classes of organic chemicals", Water Research, 33, 327-334(1999).
Bard, A.J., Faulkner, L.R., and White, H.S., "Electrochemical Methods: Fundamentals and Applications", Springer, New York(2001).
Bond, A., "Inorganic Electrochemistry: Theory, Practice and Application by Piero Zanello", University of Siena, Italy(2004).
Capelle, A. and Vooys, F.d., "Activated Carbon. A Fascinating Material", Netherlands (1983).
Carp, O., Huisman, C.L., and Reller, A., "Photo-induced reactivity of titanium dioxide", Progress in Solid State Chemistry, 32, 33-177(2004).
Cesarino, I., Cesarino, V., Moraes, F.C., Ferreira, T.C., Lanza, M.R., Mascaro, L.H., and Machado, S.A., "Electrochemical degradation of benzene in natural water using silver nanoparticle-decorated carbon nanotubes", Materials Chemistry and Physics, 141, 304-309(2013).
Chen, H., Zhang, J., Chen, Q., Li, J., Li, D., Dong, C., Liu, Y., Zhou, B., Shang, S., and Cai, W., "Assessment of a COD analytical method based on the photoelectrocatalysis of a TiO2 nanotube array sensor", Analytical Methods, 4, 1790-1796(2012).
Chen, J., Zhang, J., Xian, Y., Ying, X., Liu, M., and Jin, L., "Preparation and application of TiO2 photocatalytic sensor for chemical oxygen demand determination in water research", Water Research, 39, 1340-1346(2005).
Chern, J.-M., and Chien, Y.-W., "Competitive adsorption of benzoic acid and p- nitrophenol onto activated carbon: isotherm and breakthrough curves", Water Research, 37, 2347-2356(2003).
Duan, W., Torras, M., Roig, A., Fernandez-Sanchez, C., and Gich, M., "Composites of porous carbon and copper-based nanoparticles for the electrochemical analysis of chemical oxygen demand", Materials Today Chemistry, 24, 100899(2022).
Elfeky, E.M., Shehata, M.R., Elbashar, Y.H., Barakat, M.H., and El Rouby, W.M., "Developing the sensing features of copper electrodes as an environmental friendly detection tool for chemical oxygen demand", RSC Advances, 12, 4199- 4208(2022).
Elgrishi, N., Rountree, K.J., McCarthy, B.D., Rountree, E.S., Eisenhart, T.T., and Dempsey, J.L., "A practical beginner’s guide to cyclic voltammetry", Journal of Chemical Education, 95, 197-206(2018).
Enache, T.A., and Oliveira-Brett, A.M., "Phenol and para-substituted phenols electrochemical oxidation pathways", Journal of Electroanalytical Chemistry, 655, 9-16(2011).
European Environment Agency, "2008/105/EC - On environmental quality standards in the field of water policy," European Environment Agency, 2008, https://www.eea.europa.eu/policy-documents/2008-105-ec.
Fang, Z., Chen, D., Yan, F., Lv, J., Wang, Y., and Guan, X., "A novel Ni/ZnO/Cu composite electrode with high sensitivity for detection of chemical oxygen demand", Surfaces and Interfaces, 24, 101091(2021).
Gooding, J.J., "Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing", Electrochimica Acta, 50, 3049- 3060(2005).
Guo, X., Li, D., Wan, J., and Yu, X., "Preparation and electrochemical property of TiO2/Nano-graphite composite anode for electro-catalytic degradation of ceftriaxone sodium", Electrochimica Acta, 180, 957-964(2015).
Harvey, D., "Voltammetric and amperometric methods", Analytical Chemistry 2.1, DePauw University, U.S.A.(2019).
Hashimoto, K., Wasada, K., Osaki, M., Shono, E., Adachi, K., Toukai, N., Kominami, H., and Kera, Y., "Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere", Applied Catalysis B: Environmental, 30, 429-436(2001).
Hassan, H.H., Badr, I.H., Abdel-Fatah, H.T., Elfeky, E.M., and Abdel-Aziz, A.M., "Low cost chemical oxygen demand sensor based on electrodeposited nano- copper film", Arabian Journal of Chemistry, 11, 171-180(2018).
Hou, P.-X., Liu, C., and Cheng, H.-M., "Purification of carbon nanotubes", Carbon, 46, 2003-2025(2008).
Huang, X., Zhu, Y., Yang, W., Jiang, A., Jin, X., Zhang, Y., Yan, L., Zhang, G., and Liu, Z., "A self-supported CuO/Cu nanowire electrode as highly efficient sensor for COD measurement", Molecules, 24, 3132(2019).
Hur, J., Lee, B.-M., Lee, T.-H., and Park, D.-H., "Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra", Sensors, 10, 2460-2471(2010).
Iijima, S., "Helical microtubules of graphitic carbon", Nature, 354, 56-58(1991).
Jiang, R., Chai, X.-s., Zhang, C., and Tang, H.-l., "A dual-wavelength spectroscopic method for the low chemical oxygen demand determination", Spectroscopy and Spectral Analysis, 31, 2007-2010(2011).
Jing, T., Zhou, Y., Hao, Q., Zhou, Y., and Mei, S., "A nano-nickel electrochemical sensor for sensitive determination of chemical oxygen demand", Analytical Methods, 4, 1155-1159(2012).
Kabir, H., Zhu, H., Lopez, R., Nicholas, N.W., McIlroy, D.N., Echeverria, E., May, J., and Cheng, I.F., "Electrochemical determination of chemical oxygen demand on functionalized pseudo-graphite electrode", Journal of Electroanalytical Chemistry, 851, 113448(2019).
Kolb, M., Bahadir, M., and Teichgraber, B., "Determination of chemical oxygen demand (COD) using an alternative wet chemical method free of mercury and dichromate. " , Water Research, 122, 645-654(2017).
Kumaravel, A., and Chandrasekaran, M., "A biocompatible nano TiO2/nafion composite modified glassy carbon electrode for the detection of fenitrothion", Journal of Electroanalytical Chemistry, 650, 163-170(2011).
Lambert, J., Ajayan, P., Bernier, P., Planeix, J., Brotons, V., Coq, B., and Castaing, J., "Improving conditions towards isolating single-shell carbon nanotubes", Chemical Physics Letters, 226, 364-371(1994).
Lee, K.-H., Ishikawa, T., McNiven, S., Nomura, Y., Hiratsuka, A., Sasaki, S., Arikawa, Y., and Karube, I., "Evaluation of chemical oxygen demand (COD) based on coulometric determination of electrochemical oxygen demand (EOD) using a surface oxidized copper electrode", Analytica Chimica Acta, 398, 161- 171(1999).
Li, D., "TiO2 Photocatalytic Degradation of Waste Activated Sludge and Potassium Hydrogen Phthalate in Wastewater for Enhancing Biogas Production", University of Tsukuba, Japan(2013).
Li, J., Tong, Y., Guan, L., Wu, S., and Li, D., "Optimization of COD determination by UV–vis spectroscopy using PLS chemometrics algorithms", 174, 591- 599(2018).
Li, L., Zhang, S., Li, G., and Zhao, H., "Determination of chemical oxygen demand of nitrogenous organic compounds in wastewater using synergetic photoelectrocatalytic oxidation effect at TiO2 nanostructured electrode", Analytica Chimica Acta, 754, 47-53(2012).
Li, S.X., Zheng, F.Y., Cai, W.L., Han, A.Q., and Xie, Y.K., "Surface modification of nanometer size TiOASC with salicylic acid for photocatalytic degradation of 4- nitrophenol", Journal of Hazardous Materials, 135, 431-436(2006).
Li, X., Lin, D., Lu, K., Chen, X., Yin, S., Li, Y., Zhang, Z., Tang, M., and Chen, G., "Graphene oxide orientated by a magnetic field and application in sensitive detection of chemical oxygen demand", Analytica Chimica Acta, 1122, 31- 38(2020).
Li, X., Shang, Y., Fernandez, C., Pei, T., and Wang, L., "Electrochemical determination of chemical oxygen demand in mixed organic solution by Al/SnO2-TiO2 electrode", International Journal of Electrochemical Science, 16, 211111(2021).
Ma, Y., Tie, Z., Zhou, M., Wang, N., Cao, X., and Xie, Y., "Accurate determination of low-level chemical oxygen demand using a multistep chemical oxidation digestion process for treating drinking water samples", Analytical Methods, 8, 3839-3846(2016).
Mohamad, M., Haq, B.U., Ahmed, R., Shaari, A., Ali, N., and Hussain, R., "A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs", Materials Science in Semiconductor Processing, 31, 405-414(2015).
Merian, E., Anke, M., Ihnat, M., and Stoeppler, M., "Elements and Their Compounds in the Environment. 2nd Edition.", Wiley-VCH Verlag, Weinheim(2004).
Nadjo, L., and Saveant, J., "Linear sweep voltammetry: Kinetic control by charge transfer and/or secondary chemical reactions: I. Formal kinetics", Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 48, 113- 145(1973).
O′Sullivan, E.J., and Calvo, E.J., "Reactions at metal oxide electrodes", Comprehensive Chemical Kinetics, Elsevier, (1988).
Pan, B. and Xing, B., "Adsorption mechanisms of organic chemicals on carbon nanotubes", Environmental Science & Technology, 42, 9005-9013(2008).
Park, J. and Eun, C., "Electrochemical behavior and determination of salicylic acid at carbon-fiber electrodes", Electrochimica Acta, 194, 346-356(2016).
Pop, A., Ilinoiu, E., Manea, F., Pisoi, I., and Burtica, G., "Determination of organic pollutants from water by electrochemical methods", Environmental Engineering & Management Journal, 10, (2011).
Punetha, V.D., Rana, S., Yoo, H.J., Chaurasia, A., McLeskey Jr, J.T., Ramasamy, M.S., Sahoo, N.G., and Cho, J.W., "Functionalization of carbon nanomaterials for advanced polymer nanocomposites: A comparison study between CNT and graphene", Progress in Polymer Science, 67, 1-47(2017).
Rice, E.W., Bridgewater, L., and Association, A.P.H., "Standard Methods for the Examination of Water and Wastewater", American Public Health Association(APHA), (2012).
Ross, J.W., DeMars, R.D., and Shain, I., "Analytical applications of hanging mercury drop electrode", Analytical chemistry, 28, 1768-1771(1956).
Sahu, A., Jain, A., and Gulbake, A., "The role of carbon nanotubes in nanobiomedicines", International Journal of Pharmacy and Pharmaceutical Sciences, 9, 235-251(2017).
Saranya, S., Feminus, J.J., Geetha, B., and Deepa, P.N., "Simultaneous detection of glutathione, threonine, and glycine at electrodeposited RuHCF/rGO-modified electrode", Ionics, 25, 5537-5550(2019).
Srinivasan, S., Srinivasan, S., and Bommaraju, T., "Electrochemical Technologies and Applications", Fuel Cells: From Fundamentals to Applications, 93-186(2006).
Su, Y., Li, X., Chen, H., Lv, Y., and Hou, X., "Rapid, sensitive and on-line measurement of chemical oxygen demand by novel optical method based on UV photolysis and chemiluminescence", Microchemical Journal, 87, 56- 61(2007).
Tanaka, K., Capule, M.F., and Hisanaga, T., "Effect of crystallinity of TiO2 on its photocatalytic action", Chemical Physics Letters, 187, 73-76(1991).
Torriero, A.A.J., Luco, J.M., Sereno, L., and Raba, J., "Voltammetric determination of salicylic acid in pharmaceuticals formulations of acetylsalicylic acid", Talanta, 62, 247-254(2004).
Trang, N.T.H., Ali, Z., and Kang, D.J., "Mesoporous TiO2 spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries", ACS Applied Materials & Interfaces, 7, 3676-3683(2015).
Wang, J., Yin, G.-P., Zhang, J., Wang, Z., and Gao, Y., "High utilization platinum deposition on single-walled carbon nanotubes as catalysts for direct methanol fuel cell", Electrochimica Acta, 52, 7042-7050(2007).
Westbroek, P., and Temmerman, E., "In line measurement of chemical oxygen demand by means of multipulse amperometry at a rotating Pt ring—Pt/PbO2 disc electrode", Analytica Chimica Acta, 437, 95-105(2001).
Wu, J.W., Wang, Q., Umar, A., Sun, S.H., Huang, L., Wang, J.Y., and Gao, Y.S., "Highly sensitive p-nitrophenol chemical sensor based on crystalline alpha- MnO2 nanotubes", New Journal of Chemistry, 38, 4420-4426(2014).
Xie, X.-L., Mai, Y.-W., and Zhou, X.-P., "Dispersion and alignment of carbon nanotubes in polymer matrix: a review", Materials Science and Engineering: R: Reports, 49, 89-112(2005).
Yang, J., Chen, J., Zhou, Y., and Wu, K., "A nano-copper electrochemical sensor for sensitive detection of chemical oxygen demand", Sensors and Actuators B: Chemical, 153, 78-82(2011).
Zhang, F.-J., Chen, M.-l., and Oh, W.-c., "Photoelectrocatalytic properties of Ag- CNT/TiO2 composite electrodes for methylene blue degradation", New Carbon Materials, 25, 348-356(2010).
Zhang, J., Zhou, B., Zheng, Q., Li, J., Bai, J., Liu, Y., and Cai, W., "Photoelectrocatalytic COD determination method using highly ordered TiO2 nanotube array", Water Research, 43, 1986-1992(2009).
Zhang, Z., Chang, X., and Chen, A., "Determination of chemical oxygen demand based on photoelectrocatalysis of nanoporous TiO2 electrodes", Sensors and Actuators B: Chemical, 223, 664-670(2016).
Zheng, Q., Zhou, B., Bai, J., Li, L., Jin, Z., Zhang, J., Li, J., Liu, Y., Cai, W., and Zhu, X., "Self?organized TiO2 nanotube array sensor for the determination of chemical oxygen demand", Advanced Materials, 20, 1044-1049(2008).
胡啟章, 「電化學原理與方法」, 五南圖書出版股份有限公司, 台北(2002)
梁昇致, 「利用 TiO2 電極檢測生活污水中 COD 之研究」, 碩士論文, 朝陽科技 大學環境工程與管理系碩士班, 台中(2013).
曾俊豪, 「利用新穎電漿技術改質奈米碳管以製備導電複合材料之研究」, 博士 論文, 國立成功大學化學工程學系碩博士班, 台南(2009).
曾苓婷, 「利用電化學技術監測污水中 COD 之研究」, 碩士論文, 朝陽科技大學 環境工程與管理系碩士班, 台中(2011).
楊藏嶽, and 楊慶成, 「中國電機工程師手冊第二十二篇-電化學及應用」, 中國 電機工程學會, 台灣(1992).
鄭惟文, 「以釩改質二氧化鈦電觸媒降解染料 AR27 之研究」, 碩士論文, 國立 中興大學環境工程學系所, 台中(2013).
羅弘駿, 「利用二氧化鈦/活性碳電極進行電容去離子處理鄰苯二甲酸氫鉀之研 究」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2018).
黃韻寧, 「以二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行 COD 之伏安 法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2015).
盧怡君, 「以去官能基化二氧化鈦/單壁奈米碳管複合材料修飾玻璃碳電極進行 COD 之伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃園 (2015).
張佳琦, 「運用氧化石墨烯/單壁奈米碳管/碲化鉍修飾玻璃碳電極進行水中鎘之方 波陽極析出伏安法分析」, 碩士論文, 國立中央大學環境工程研究所, 桃 園(2019).
陳凱欣, 「以溶膠凝膠法製備MWCNTs/TiO2 及其光催化特性」, 碩士論文, 國立中央大學環境工程研究所, 桃園(2013).
指導教授 秦靜如(Ching-Ju Monica Chin) 審核日期 2024-10-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明