博碩士論文 110323060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:3.16.149.93
姓名 徐旻毓(Min-Yu Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 柏拉圖多面體顆粒在振動床內的運動行為之研究
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-2-1以後開放)
摘要(中) 在顆粒體的振動研究中,顆粒形狀、振動頻率f與無因次振動加速度Γ是影響動力學行為的關鍵因素。本研究透過振動床實驗,調整不同振動條件,系統性的探討柏拉圖多面體顆粒與球體顆粒在形狀差異下的運動。本研究選取五種柏拉圖多面體,包括四面體、立方體、八面體、十二面體與二十面體,其圓球度分別為 0.6276、0.8172、0.8573、0.923、0.9523,單面面積依次為 9.81、5.45、3.90、2.41、1.40 ?mm?^2。本文分析圓球度、振動頻率與無因次振動加速度Γ對迴流強度、顆粒溫度及顆粒混合性的影響,並進一步探討柏拉圖多面體顆粒單面面積對顆粒流動的影響。研究結果表明,隨著Γ的增加(即振動床輸入能量的提升),顆粒的迴流強度與粒子溫度顯著增強。然而,在相同加速度條件下,振動頻率的提高會導致振幅減小,輸入能量下降,從而使迴流強度與粒子溫度降低。當圓球度增加時(單面面積降低),顆粒間的摩擦力減小,能量耗散減少,因此迴流強度與粒子溫度進一步提升。在 f=40 Hz 的振動條件下,立方體顆粒的迴流強度與粒子溫度顯著低於其他形狀的顆粒,甚至低於圓球度更低的四面體顆粒。透過分析粒子溫度隨振動床高度的變化,可以觀察到這一現象表明,在高頻低振幅條件下,立方體顆粒更容易在振動床容器底部堆積,限制其流動性與運動行為。此外,透過柏拉圖多面體顆粒與圓球的二元混合實驗發現,在高Γ條件下,因其輸入的能量較高,各形狀顆粒的最終混合度相近;而在低Γ條件下,因其輸入能量較小,故圓球度的影響提升,高圓球度顆粒相較於低圓球度顆粒更有利於混合效果的提升。
摘要(英) In the study of granular vibration, particle shape, vibration frequency f, and dimensionless vibration acceleration Γ are critical factors influencing dynamic behavior. This study systematically investigates the dynamic behavior of Platonic solid particles and spherical particles with varying shapes through vibration bed experiments under different vibration conditions. Five Platonic solids were selected for the study, including tetrahedron, cube, octahedron, dodecahedron, and icosahedron, with sphericities of 0.6276, 0.8172, 0.8573, 0.923, and 0.9523, respectively, and corresponding single-face areas of 9.81, 5.45, 3.90, 2.41, and 1.40 ?mm?^2. This paper focuses on analyzing the effects of sphericity, vibration frequency, and dimensionless vibration acceleration on recirculation intensity, granular temperature, and particle mixing, while further exploring the role of the single-face area of Platonic solid particles. The results show that with an increase in Γ (i.e., enhanced energy input to the vibration bed), the recirculation intensity and granular temperature of the particles significantly increase. However, under the same acceleration conditions, increasing the vibration frequency reduces the amplitude, decreases the energy input, and consequently leads to a reduction in recirculation intensity and granular temperature. As sphericity increases (corresponding to a decrease in single-face area), the friction between particles is reduced, resulting in lower energy dissipation and further increases in recirculation intensity and granular temperature. Under the vibration condition of f=40 Hz, the recirculation intensity and granular temperature of cubic particles are significantly lower than those of other shapes, even lower than those of tetrahedral particles with lower sphericity. This indicates that, under high-frequency and low-amplitude conditions, cubic particles are more prone to accumulate at the bottom of the vibration bed container, restricting their mobility and dynamic behavior.
Additionally, binary mixing experiments of Platonic solid particles and spherical particles revealed that at high Γ values, the final mixing degree of all particle shapes is similar. However, under low Γ conditions, particles with higher sphericity achieve better final mixing than those with lower sphericity. This indicates that the dynamic behavior of high-sphericity particles under low-amplitude conditions is more conducive to enhancing the mixing effect. This study provides a comprehensive understanding of the combined effects of particle shape and vibration parameters on the dynamic behavior of granular flow, offering valuable insights for optimizing particle separation and mixing performance in vibration bed systems.
關鍵字(中) ★ 振動床
★ 柏拉圖多面體顆粒
★ 雙迴流
關鍵字(英) ★ Vibrating bed
★ Platonic polyhedral particles
★ Dual recirculation
論文目次 小寫符號 VII
大寫符號 VIII
希臘符號 IX
摘要 X
Abstracrt XI
第一章 緒論 1
1.1 研究背景 1
1.1.1 顆粒流 1
1.1.2 柏拉圖多面體 2
1.2 文獻回顧 3
1.2.1 垂直振動床內的迴流現象 3
1.2.2 非球型顆粒與柏拉圖多面體顆粒研究 4
1.2.3 質點影像測速技術 6
1.2.4 圓球度 7
1.2.5 迴流強度與粒子溫度 7
1.2.6 Lacey mixing index 混和指數 9
1.3 研究動機與目的 9
第二章 實驗設備、研究方法與實驗步驟 12
2.1 實驗設備 12
2.2 研究方法 15
2.2.1 質點影像測速技術與影像分析流程 16
2.2.2 分析方法 16
2.3 定義柏拉圖顆粒圓球度、單面面積 18
2.4 迴流強度 19
2.5 粒子溫度 19
2.6 Lacey mixing index 20
2.7 實驗步驟 21
第三章 結果與討論 31
3.1 柏拉圖多面體顆粒在振動床中之迴流運動 31
3.1.1 速度向量圖 31
3.1.2 u平均速度與v平均速度隨x軸的變化 31
3.1.3 迴流強度與振動加速度及圓球度的關係 33
3.2 粒子溫度 36
3.2.1 柏拉圖多面體顆粒在不同振動條件下的粒子溫度 36
3.2.2 粒子溫度隨振動床高度的變化 37
3.3 柏拉圖多面體顆粒與圓球顆粒的混合 38
第四章 結論 60
參考文獻 62
參考文獻 [1] A. Karwath. 柏拉圖立體. 柏拉圖立體 2003 [cited 2025 January 13]; Available.
[2] E. Clement, J. Duran, and J. Rajchenbach, "Experimental study of heaping in a two-dimensional ‘‘sand pile’’". Physical Review Letters, Vol. 69(8): pp. 1189, 1992.
[3] P. Eshuis, K. van der Weele, D. van der Meer, and D. Lohse, "Granular leidenfrost effect: Experiment and theory of floating particle clusters". Physical review letters, Vol. 95(25): pp. 258001, 2005.
[4] J.B. Knight, E.E. Ehrichs, V.Y. Kuperman, J.K. Flint, H.M. Jaeger, and S.R. Nagel, "Experimental study of granular convection". Physical Review E, Vol. 54(5): pp. 5726, 1996.
[5] J.B. Knight, "External boundaries and internal shear bands in granular convection". Physical Review E, Vol. 55(5): pp. 6016, 1997.
[6] S.-S. Hsiau and C. Chen, "Granular convection cells in a vertical shaker". Powder Technology, Vol. 111(3): pp. 210-217, 2000.
[7] S.S. Hsiau, P.C. Wang, and C.H. Tai, "Convection cells and segregation in a vibrated granular bed". AIChE Journal, Vol. 48(7): pp. 1430-1438, 2002.
[8] C. Tai and S. Hsiau, "Dynamic behaviors of powders in a vibrating bed". Powder Technology, Vol. 139(3): pp. 221-232, 2004.
[9] S. Hsiau, L. Lu, and C. Tai, "Experimental investigations of granular temperature in vertical vibrated beds". Powder Technology, Vol. 182(2): pp. 202-210, 2008.
[10] C.-C. Liao and S.-S. Hsiau, "Transport properties and segregation phenomena in vibrating granular beds". KONA Powder and Particle Journal, Vol. 33: pp. 109-126, 2016.
[11] Z. Xie, X. An, Y. Wu, L. Wang, Q. Qian, and X. Yang, "Experimental study on the packing of cubic particles under three-dimensional vibration". Powder technology, Vol. 317: pp. 13-22, 2017.
[12] M. Li and X. An, "Numerical investigations on the flow behaviors, characteristics, and mechanisms for different Platonic solids during mixing in a rotating drum". Industrial & Engineering Chemistry Research, Vol. 62(9): pp. 4039-4053, 2023.
[13] D. Hohner, S. Wirtz, and V. Scherer, "Experimental and numerical investigation on the influence of particle shape and shape approximation on hopper discharge using the discrete element method". Powder Technology, Vol. 235: pp. 614-627, 2013.
[14] H. Zhao, X. An, K. Dong, R. Yang, F. Xu, H. Fu, H. Zhang, and X. Yang, "Macro-and microscopic analyses of piles formed by Platonic solids". Chemical Engineering Science, Vol. 205: pp. 391-400, 2019.
[15] A.G. Athanassiadis, M.Z. Miskin, P. Kaplan, N. Rodenberg, S.H. Lee, J. Merritt, E. Brown, J. Amend, H. Lipson, and H.M. Jaeger, "Particle shape effects on the stress response of granular packings". Soft Matter, Vol. 10(1): pp. 48-59, 2014.
[16] D. Hohner, S. Wirtz, and V. Scherer, "A study on the influence of particle shape and shape approximation on particle mechanics in a rotating drum using the discrete element method". Powder Technology, Vol. 253: pp. 256-265, 2014.
[17] S. Torquato and Y. Jiao, "Dense packings of polyhedra: Platonic and Archimedean solids". Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, Vol. 80(4): pp. 041104, 2009.
[18] D.S. Nasato, R.Q. Albuquerque, and H. Briesen, "Predicting the behavior of granules of complex shapes using coarse-grained particles and artificial neural networks". Powder Technology, Vol. 383: pp. 328-335, 2021.
[19] J. Baker and A. Kudrolli, "Maximum and minimum stable random packings of platonic solids". Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, Vol. 82(6): pp. 061304, 2010.
[20] W. Thielicke and R. Sonntag, "Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab". Vol., 2021.
[21] R.J. Adrian, "Twenty years of particle image velocimetry". Experiments in fluids, Vol. 39: pp. 159-169, 2005.
[22] C. Brossard, J. Monnier, P. Barricau, F.-X. Vandernoot, Y. Le Sant, F. Champagnat, and G. Le Besnerais, "Principles and applications of particle image velocimetry". Aerospace Lab, Vol.(1): pp. p. 1-11, 2009.
[23] G. Bagheri, C. Bonadonna, I. Manzella, and P. Vonlanthen, "On the characterization of size and shape of irregular particles". Powder Technology, Vol. 270: pp. 141-153, 2015.
[24] J.W. Bullard and E.J. Garboczi, "Defining shape measures for 3D star-shaped particles: Sphericity, roundness, and dimensions". Powder technology, Vol. 249: pp. 241-252, 2013.
[25] J.M. Rodriguez, T. Edeskar, and S. Knutsson, "Particle shape quantities and measurement Techniques–A review". The Electronic journal of geotechnical engineering, Vol. 18: pp. 169-198, 2013.
[26] C.-H. Wu, "非球形顆粒體在振動床中流動行為之研究". 2010, National Central University.
[27] 沈柏諺, "不同粒子堆積高度振動床迴流運動機制之研究". 2009, National Central University.
[28] I. Goldhirsch and G. Zanetti, "Clustering instability in dissipative gases". Physical review letters, Vol. 70(11): pp. 1619, 1993.
[29] R. Wildman, T. Martin, P. Krouskop, J. Talbot, J. Huntley, and D. Parker, "Convection in vibrated annular granular beds". Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, Vol. 71(6): pp. 061301, 2005.
[30] P.M.C. Lacey, "Developments in the theory of particle mixing". Journal of applied chemistry, Vol. 4(5): pp. 257-268, 1954.
[31] 宋岳樓, "顆粒混合指標性能之研究". 中央大學機械工程學系學位論文, Vol. 2012: pp. 1-58, 2012.
[32] M. Chen, M. Liu, T. Li, Y. Tang, R. Liu, Y. Wen, B. Liu, and Y. Shao, "A novel mixing index and its application in particle mixing behavior study in multiple-spouted bed". Powder technology, Vol. 339: pp. 167-181, 2018.
指導教授 蕭述三(Shu-San Hsiau) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明