博碩士論文 110323124 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.144.178.82
姓名 林耆榕(Lin-Chi-Jung)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高深徑比微細孔電化學加工 多重物理量耦合模擬之研究
(Multi-physics coupling simulation of high aspect ratio micro-hole electrochemical drilling)
相關論文
★ 混氣放電線切割加工 N-Type 單晶碳化矽之研究★ 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究
★ 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究★ 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究
★ 6吋碳化矽晶圓碇之線放電加工參數優化與粒子追蹤模擬分析★ 以電解混氣法輔助微電化學高深徑比鑽孔加工之研究
★ 深切緩進電化學放電加工於石英玻璃之創成特性研究★ 機械手臂輔助電解複合研磨系統應用於積層製造鈦合金葉片拋光
★ 混氣電解電漿拋光法於不銹鋼管內表面品質改善之研究★ 靜電感應電化學加工法於哈氏合金內管壁拋光特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-20以後開放)
摘要(中) 為節省加工之時間成本,本論文探討使用COMSOL Multiphysics多重物理場耦合軟體應用在預測電化學鑽孔技術之模擬,其中除考慮電場影響外,也加入氣泡對流場的影響。實驗電極採用直徑500 μm之中空黃銅管,加工工件為304不鏽鋼材料,過程中採定電壓加工方式,搭配電解混氣裝置以進行實驗。透過調整不同加工電壓、進給速度、混氣電流,進行12mm淺孔加工實驗。基於淺孔加工結果,加入液體流速之修正係數,進行淺孔模擬線性擬合,並將模擬模型用於預測深孔加工結果,嘗試預測深孔出口之孔徑與極限加工深度,並與實驗結果進行比對,最終完成深徑比為86之深孔加工與一深孔加工模型,未來可透過此模型預測深孔加工出結果,以減少時間成本。
結合實驗與模擬結果顯示,無混氣之深孔加工可加工至深度61mm,混氣電流為0.25A時,加工深度可至95mm,透過淺孔擬合之模型嘗試預測深孔孔徑之誤差隨深度增加而逐漸增加,其中加工深度95mm時,加工孔徑與模擬之誤差為9.4%。
摘要(英) To reduce the time cost of machining, this study explores the application of COMSOL Multiphysics, a multiphysics coupling software, for simulating the prediction of electrochemical drilling technology. In addition to considering the influence of the electric field, the study also incorporates the effect of bubble convection on the flow field. The experimental electrode used is a hollow brass tube with a diameter of 500 μm, and the workpiece material is 304 stainless steel. The machining process adopts a constant voltage method, combined with an electrolyte gas-mixing device for experimentation. Shallow hole machining experiments with a depth of 12 mm were conducted by adjusting different machining voltages, feed rates, and gas-mixing currents.Based on the shallow hole machining results, a correction coefficient for the liquid flow rate was introduced to perform linear fitting for shallow hole simulations. The simulation model was then applied to predict deep hole machining results, attempting to estimate the bore diameter at the deep hole outlet and the maximum machining depth. These predictions were compared with experimental results, ultimately achieving deep hole machining with an aspect ratio of 86 and developing a deep hole machining model. In the future, this model can be used to predict deep hole machining outcomes and reduce time costs.
The combination of experimental and simulation results indicates that deep hole machining without gas mixing can reach a depth of 61 mm. When the gas-mixing current is 0.25 A, the machining depth can reach 95 mm. The error between the predicted and experimental bore diameters increases with depth; at a machining depth of 95 mm, the error between the experimental and simulated bore diameter is 9.4%.
關鍵字(中) ★ COMSOL Multiphysics
★ 多重物理場耦合
★ 電化學鑽孔
★ 定電壓
★ 修正係數
★ 線性擬合
關鍵字(英) ★ COMSOL Multiphysics
★ multiphysics coupling
★ electrochemical drilling
★ constant voltage
★ correction factor
★ linear fitting
論文目次 摘要 I
Abstract II
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機及目的 2
1-3 文獻回顧 2
1-3-1 電化學鑽孔加工之相關文獻 2
1-3-2 電化學加工模擬相關文獻 5
1-4 論文架構 9
第二章 基礎理論 11
2-1 電化學加工 11
2-1-1 電化學鑽孔加工原理 11
2-1-2 法拉第電解定律 12
2-1-3 歐姆定律 13
2-2 電解產氣技術 13
2-2-1 電解產氣基本原理 14
2-2-2 電解產氣流程 15
2-3 混氣電化學加工 15
第三章 實驗設備與步驟方法 17
3-1 基礎實驗相關設備 17
3-1-1 深孔電化學加工機 17
3-1-2 電解液循環系統 17
3-1-3 直流電源供應器 19
3-1-4 電解式混合氣體模組 19
3-1-5 線切割放電加工機 20
3-1-6 超音波清洗裝置 21
3-1-7 電流勾表 22
3-1-8 示波器 23
3-1-9 智慧型電導度控制器 24
3-1-10 四極式電導度電極 24
3-2 檢測儀器 25
3-2-1 高精度雷射共軛焦顯微鏡 25
3-2-2 半自動影像測定儀 26
3-3 實驗材料 27
3-3-1 電解液之選用 27
3-3-2 工件材料 28
3-3-3 刀具電極之簡介 30
3-4 實驗方法與實驗流程 31
3-4-1 實驗方法 31
3-4-2 實驗流程 33
第四章 多重物理耦合模擬 36
4-1 COMSOL Multiphysics軟體介紹 36
4-2 電化學鑽孔加工模型敘述 36
4-3 電場邊界條件設置 39
4-4 紊流,k-ε模組邊界條件設置 40
4-5 變形幾何模組與多重物理量之邊界條件設置 41
第五章 結果與討論 43
5-1 不同混氣電流對實際加工之影響 43
5-2 基於電場影響之模擬結果分析 44
5-2-1 不同電壓下對模擬擴孔量之影響 44
5-2-2 不同進給速度下對模擬擴孔量之影響 46
5-3 基於電場與氣泡流模組耦合影響之模擬結果分析 48
5-3-1 有無修正係數對模擬擴孔量之影響 48
5-4 模擬與實際驗證 53
5-4-1 擴孔量隨深度變化之比較 57
5-4-2 流速隨深度變化之比較 59
第六章 結論 63
第七章 未來展望 64
參考文獻 65
參考文獻 [1] R. Thanigaivelan, R. M. Arunachalam, B. Karthikeyan, and P. Loganathan, “Electrochemical Micromachining of Stainless Steel with Acidified Sodium Nitrate Electrolyte,” Procedia CIRP, vol. 6, pp. 351–355, 2013, doi: 10.1016/j.procir.2013.03.011.
[2] M. Neergat and K. R. Weisbrod, “Electrodissolution of 304 stainless steel in neutral electrolytes for surface decontamination applications,” Corros. Sci., vol. 53, no. 12, pp. 3983–3990, Dec. 2011, doi: 10.1016/j.corsci.2011.08.001.
[3] D. Zhu and H. Y. Xu, “Improvement of electrochemical machining accuracy by using dual pole tool,” J. Mater. Process. Technol., vol. 129, no. 1–3, pp. 15–18, Oct. 2002, doi: 10.1016/S0924-0136(02)00567-8.
[4] K. P. Rajurkar and D. Zhu, “Improvement of Electrochemical Machining Accuracy by Using Orbital Electrode Movement,” CIRP Ann., vol. 48, no. 1, pp. 139–142, 1999, doi: 10.1016/S0007-8506(07)63150-3.
[5] M. S. Hewidy, S. J. Ebeid, K. P. Rajurkar, and M. F. El-Safti, “Electrochemical machining under orbital motion conditions,” J. Mater. Process. Technol., vol. 109, no. 3, pp. 339–346, Feb. 2001, doi: 10.1016/S0924-0136(00)00827-X.
[6] X. Yue, N. Qu, S. Niu, and H. Li, “Improving the machined bottom surface in electrochemical mill-grinding by adjusting the electrolyte flow field,” J. Mater. Process. Technol., vol. 276, p. 116413, Feb. 2020, doi: 10.1016/j.jmatprotec.2019.116413.
[7] C. Zhang, P. Zheng, R. Liang, K. Yun, X. Jiang, and Z. Yan, “Effects of a Magnetic Field on the Machining Accuracy for the Electrochemical Drilling of Micro Holes,” Int. J. Electrochem. Sci., vol. 15, no. 2, pp. 1148–1159, Feb. 2020, doi: 10.20964/2020.02.10.
[8] K. Egashira, A. Hayashi, Y. Hirai, K. Yamaguchi, and M. Ota, “Drilling of microholes using electrochemical machining,” Precis. Eng., vol. 54, pp. 338–343, Oct. 2018, doi: 10.1016/j.precisioneng.2018.07.002.
[9] 洪智育,微電化學深孔加工之研究與分析,國立中央大學,2006。
[10] 林鈴洲,附絕緣層之電極管應用於電化學鑽孔加工之研究,逢甲大學,2017。
[11] 楊正賢,電極端錐度變化於電化學鑽孔特性之研究,逢甲大學,2018。
[12] X. Wang, N. Qu, X. Fang, and H. Li, “Electrochemical drilling with constant electrolyte flow,” J. Mater. Process. Technol., vol. 238, pp. 1–7, Dec. 2016, doi: 10.1016/j.jmatprotec.2016.06.033.
[13] Z. Ye, X. Chen, G. Li, K. K. Saxena, M. H. Arshad, and Y. Zhang, “Enhancement mechanism of electrochemical drilling square-small holes with workpiece vibration,” J. Manuf. Process., vol. 113, pp. 197–214, Mar. 2024, doi: 10.1016/j.jmapro.2024.01.064.
[14] M. S. Hewidy, S. J. Ebeid, T. A. El-Taweel, and A. H. Youssef, “Modelling the performance of ECM assisted by low frequency vibrations,” J. Mater. Process. Technol., vol. 189, no. 1, pp. 466–472, Jul. 2007, doi: 10.1016/j.jmatprotec.2007.02.032.
[15] A. M. Pawar, S. S. Chavan, and D. S. Bilgi, “MULTIPHYSICS SIMULATION AND EXPERIMENTAL VALIDATION OF ECM DRILLING PROCESS,” vol. 6, no. 1, 2019.
[16] L. Cheng, X. Chen, Z. Ye, and Y. Zhang, “Advancing electrochemical drilling process via coupling of flow field and electric field in pulsating state generated by a novel tube tool,” Chin. J. Aeronaut., vol. 37, no. 4, pp. 542–555, Apr. 2024, doi: 10.1016/j.cja.2023.08.020.
[17] Z. Li, W. Li, B. Cao, Y. Liu, and Y. Dai, “Simulation and experiment of ECM accuracy of cooling holes considering the influence of temperature field,” Case Stud. Therm. Eng., vol. 35, p. 102112, Jul. 2022, doi: 10.1016/j.csite.2022.102112.
[18] M. Fang, L. Yu, X. F. Chu, L. L. Hou, X. Cheng, and J. L. Wang, “Research on simulation method of multiple time scales dissolution process in tube electrode pulse electrochemical machining,” J. Manuf. Process., vol. 110, pp. 318–330, Jan. 2024, doi: 10.1016/j.jmapro.2024.01.003.
[19] H. Luo, D. Mi, and W. Natsu, “Characteristics of ECM polishing influenced by workpiece corner feature and electrolyte flow,” Precis. Eng., vol. 56, pp. 330–342, Mar. 2019, doi: 10.1016/j.precisioneng.2019.01.003.
[20] 黃銘志,電化學鑽孔加工之模擬,國立中央大學,2006。
[21] P.-J. Yang and J.-C. Hung, “On high resolution bubbly flow generator for gas-mixed micro electrochemical machining,” J. Manuf. Process., vol. 121, pp. 269–288, Jul. 2024, doi: 10.1016/j.jmapro.2024.05.042.
[22] Z. Y. Li, X. T. Wei, W. W. Lu, and Q. W. Cui, “Comparative Analysis of Flow Field in Mixed and Non Mixed Gas Electrochemical Machining for Aero-Engine Turbine Blade Cooling Holes,” Appl. Mech. Mater., vol. 868, pp. 166–171, Jul. 2017, doi: 10.4028/www.scientific.net/AMM.868.166.
[23] D. Zhu, T. Xue, X. Hu, and Z. Gu, “Electrochemical trepanning with uniform electrolyte flow around the entire blade profile,” Chin. J. Aeronaut., vol. 32, no. 7, pp. 1748–1755, Jul. 2019, doi: 10.1016/j.cja.2018.10.004.
指導教授 洪榮洲 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明