參考文獻 |
Abarca, R. R. M., Pusta, R. S., Labad, R. B., Andit, J. L. A., Rejas, C. M., de Luna, M. D. G., & Lu, M. C. (2017). Chapter Fourteen - Effect of Upflow Velocity on Nutrient Recovery from Swine Wastewater by Fluidized Bed Struvite Crystallization. In S. Ahuja (Ed.), Chemistry and Water (pp. 511-518). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809330-6.00014-3
Bacelo, H., Pintor, A. M. A., Santos, S. C. R., Boaventura, R. A. R., & Botelho, C. M. S. (2020). Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chemical Engineering Journal, 381, 122566. https://doi.org/https://doi.org/10.1016/j.cej.2019.122566
Battistoni, P., De Angelis, A., Prisciandaro, M., Boccadoro, R., & Bolzonella, D. (2002). P removal from anaerobic supernatants by struvite crystallization: long term validation and process modelling. Water Research, 36(8), 1927-1938. https://doi.org/https://doi.org/10.1016/S0043-1354(01)00401-8
Bradford-Hartke, Z., Razmjou, A., & Gregory, L. (2021). Factors affecting phosphorus recovery as struvite: Effects of alternative magnesium sources. Desalination, 504, 114949. https://doi.org/https://doi.org/10.1016/j.desal.2021.114949
Caddarao, P. S., Garcia-Segura, S., Ballesteros, F. C., Huang, Y.-H., & Lu, M.-C. (2018). Phosphorous recovery by means of fluidized bed homogeneous crystallization of calcium phosphate. Influence of operational variables and electrolytes on brushite homogeneous crystallization. Journal of the Taiwan Institute of Chemical Engineers, 83, 124-132. https://doi.org/https://doi.org/10.1016/j.jtice.2017.12.009
Carella, F., Degli Esposti, L., Adamiano, A., & Iafisco, M. (2021). The use of calcium phosphates in cosmetics, state of the art and future perspectives. Materials, 14(21), 6398.
Chang, K.-Y., Mahasti, N. N. N., & Huang, Y.-H. (2023). Fluidized-bed homogeneous crystallization of α-Al(OH)3 for continuous aluminum removal from aqueous solution: Parameter optimization and crystallization mechanism. Journal of Water Process Engineering, 53, 103700. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103700
Chang, K.-Y., Mahasti, N. N. N., & Huang, Y.-H. (2024). Brine treatment using fluidized bed homogeneous crystallization technology for the simultaneous recovery of calcium and magnesium as dolomite-like granules. Journal of Environmental Chemical Engineering, 12(5), 113792. https://doi.org/https://doi.org/10.1016/j.jece.2024.113792
Chen, C.-S., Shih, Y.-J., & Huang, Y.-H. (2015). Remediation of lead (Pb(II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system. Chemical Engineering Journal, 279, 120-128. https://doi.org/https://doi.org/10.1016/j.cej.2015.05.013
Chen, M., & Graedel, T. E. (2016). A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Global Environmental Change, 36, 139-152. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2015.12.005
Dai, H., Lu, X., Peng, Y., Yang, Z., & Zhsssu, H. (2017). Effects of supersaturation control strategies on hydroxyapatite (HAP) crystallization for phosphorus recovery from wastewater. Environmental Science and Pollution Research, 24, 5791-5799.
Deng, L., & Dhar, B. R. (2023). Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights. Chemosphere, 330, 138685. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.138685
Fattah, K. P., Mavinic, D. S., & Koch, F. A. (2012). Influence of Process Parameters on the Characteristics of Struvite Pellets. Journal of Environmental Engineering, 138(12), 1200-1209. https://doi.org/doi:10.1061/(ASCE)EE.1943-7870.0000576
Ferguson, S., Morris, G., Hao, H., Barrett, M., & Glennon, B. (2014). Automated self seeding of batch crystallizations via plug flow seed generation. Chemical Engineering Research and Design, 92(11), 2534-2541. https://doi.org/https://doi.org/10.1016/j.cherd.2014.01.028
Frasnelli, M., & Sglavo, V. M. (2016). Effect of Mg2+ doping on beta–alpha phase transition in tricalcium phosphate (TCP) bioceramics. Acta Biomaterialia, 33, 283-289. https://doi.org/https://doi.org/10.1016/j.actbio.2016.01.015
Goyette, J.-O., Bennett, E. M., Howarth, R. W., & Maranger, R. (2016). Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin over 110?years and impacts on riverine export. Global Biogeochemical Cycles, 30(7), 1000-1014. https://doi.org/https://doi.org/10.1002/2016GB005384
Guadie, A., Belay, A., Liu, W., Yesigat, A., Hao, X., & Wang, A. (2020). Rift Valley Lake as a potential magnesium source to recover phosphorus from urine. Environmental Research, 184, 109363. https://doi.org/https://doi.org/10.1016/j.envres.2020.109363
Guadie, A., Xia, S., Jiang, W., Zhou, L., Zhang, Z., Hermanowicz, S. W., Xu, X., & Shen, S. (2014). Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor. Journal of Environmental Sciences, 26(4), 765-774. https://doi.org/https://doi.org/10.1016/S1001-0742(13)60469-6
Guan, Q., Zeng, G., Gong, B., Li, Y., Ji, H., Zhang, J., Song, J., Liu, C., Wang, Z., & Deng, C. (2021). Phosphorus recovery and iron, copper precipitation from swine wastewater via struvite crystallization using various magnesium compounds. Journal of Cleaner Production, 328, 129588. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.129588
Guan, Q., Zeng, G., Song, J., Li, Y., Yang, L., Wang, Z., & Liu, C. (2021). Highly efficient phosphorus and potassium recovery from urine via crystallization process in a fluidized bed reactor system. Journal of Environmental Chemical Engineering, 9(4), 105623. https://doi.org/https://doi.org/10.1016/j.jece.2021.105623
Gui, L., Yang, H., Huang, H., Hu, C., Feng, Y., & Wang, X. (2022). Liquid solid fluidized bed crystallization granulation technology: Development, applications, properties, and prospects. Journal of Water Process Engineering, 45, 102513. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102513
Ha, T.-H., Mahasti, N. N. N., Ha, H.-Q., Liao, P.-L., Huang, Y.-H., & Lu, M.-C. (2024). Recovery of nitrogen as struvite from swine wastewater: Comparison study of batch and continuous fluidized-bed crystallization process. Separation and Purification Technology, 351, 128045. https://doi.org/https://doi.org/10.1016/j.seppur.2024.128045
Ha, T.-H., Mahasti, N. N. N., Lin, C.-S., Lu, M.-C., & Huang, Y.-H. (2023). Enhanced struvite (MgNH4PO4·6H2O) granulation and separation from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Journal of Water Process Engineering, 53, 103855. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103855
Ha, T.-H., Mahasti, N. N. N., Lu, M.-C., & Huang, Y.-H. (2022). Application of low-solubility dolomite as seed material for phosphorus recovery from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Separation and Purification Technology, 303, 122192. https://doi.org/https://doi.org/10.1016/j.seppur.2022.122192
Han, L.-J., Li, J.-S., Xue, Q., Guo, M.-Z., Wang, P., & Poon, C. S. (2022). Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings. Construction and Building Materials, 314, 125577. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.125577
Hao, X.-D., Wang, C.-C., Lan, L., & van Loosdrecht, M. C. M. (2008). Struvite formation, analytical methods and effects of pH and Ca2?+? Water Science and technology, 58(8), 1687-1692. https://doi.org/10.2166/wst.2008.557
Jin, X., Guo, J., Hossain, M. F., Lu, J., Lu, Q., Zhou, Y., & Zhou, Y. (2024). Recent advances in the removal and recovery of phosphorus from aqueous solution by metal-based adsorbents: A review. Resources, Conservation and Recycling, 204, 107464. https://doi.org/https://doi.org/10.1016/j.resconrec.2024.107464
Karapinar, N., Hoffmann, E., & Hahn, H. H. (2006). P-recovery by secondary nucleation and growth of calcium phosphates on magnetite mineral. Water Research, 40(6), 1210-1216. https://doi.org/https://doi.org/10.1016/j.watres.2005.12.041
Kataki, S., West, H., Clarke, M., & Baruah, D. C. (2016). Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resources, Conservation and Recycling, 107, 142-156. https://doi.org/https://doi.org/10.1016/j.resconrec.2015.12.009
K?l?c, M., Y?lmaz, T., Partal, R., ??k, E., Do?an, O., Kitis, M., & Sahinkaya, E. (2023). Nutrient recovery from anaerobic digester supernatant using a fluidized-bed reactor. Journal of Water Process Engineering, 54, 103950. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103950
Kim, T.-H., Nam, Y.-K., & Lim, S. J. (2014). Effects of ionizing radiation on struvite crystallization of livestock wastewater. Radiation Physics and Chemistry, 97, 332-336.
Kovrlija, I., Locs, J., & Loca, D. (2021). Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration. Acta Biomaterialia, 135, 27-47. https://doi.org/https://doi.org/10.1016/j.actbio.2021.08.021
Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N., Jayaraman, S., Arunachalam, T., & Paramasivan, B. (2021). Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 9(5), 105579. https://doi.org/https://doi.org/10.1016/j.jece.2021.105579
Langenfeld, N., Kusuma, P., Wallentine, T., Criddle, C., Seefeldt, L., & Bugbee, B. (2021). Optimizing Nitrogen Fixation and Recycling for Food Production in Regenerative Life Support Systems. Frontiers in Astronomy and Space Sciences, 8. https://doi.org/10.3389/fspas.2021.699688
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., Jefferson, B., & Parsons, S. A. (2007). Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Research, 41(11), 2449-2456. https://doi.org/https://doi.org/10.1016/j.watres.2007.03.002
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2005). Impact of calcium on struvite crystal size, shape and purity. Journal of Crystal Growth, 283(3), 514-522. https://doi.org/https://doi.org/10.1016/j.jcrysgro.2005.06.012
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. https://doi.org/10.1080/10643380701640573
Le, M.-V., Duy, T. H. T., Dang, B.-T., Luan, V. H., Huynh, N.-D.-T., Long, N. Q., & Phuong, L. C. N. (2024). Phosphorus recovery from fertilizer industrial wastewaters using bittern: Influence of wastewater composition and pH on struvite formation. Bioresource Technology Reports, 25, 101752. https://doi.org/https://doi.org/10.1016/j.biteb.2023.101752
Le, V.-G., Vo, D.-V. N., Nguyen, N.-H., Shih, Y.-J., Vu, C.-T., Liao, C.-H., & Huang, Y.-H. (2021). Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process. Journal of Environmental Chemical Engineering, 9(3), 105019. https://doi.org/https://doi.org/10.1016/j.jece.2020.105019
Le, V.-G., Vu, C.-T., Shih, Y.-J., Bui, X.-T., Liao, C.-H., & Huang, Y.-H. (2020). Phosphorus and potassium recovery from human urine using a fluidized bed homogeneous crystallization (FBHC) process. Chemical Engineering Journal, 384, 123282. https://doi.org/https://doi.org/10.1016/j.cej.2019.123282
Leng, Y., Colston, R., & Soares, A. (2020). Understanding the biochemical characteristics of struvite bio-mineralising microorganisms and their future in nutrient recovery. Chemosphere, 247, 125799. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125799
Li, B., Boiarkina, I., Young, B., & Yu, W. (2016). Quantification and mitigation of the negative impact of calcium on struvite purity. Advanced Powder Technology, 27(6), 2354-2362. https://doi.org/https://doi.org/10.1016/j.apt.2016.10.003
Li, B., Huang, H. M., Boiarkina, I., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.07.025
Li, B., Udugama, I. A., Mansouri, S. S., Yu, W., Baroutian, S., Gernaey, K. V., & Young, B. R. (2019). An exploration of barriers for commercializing phosphorus recovery technologies. Journal of Cleaner Production, 229, 1342-1354. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.05.042
Li, J., Li, B., Huang, H., Lv, X., Zhao, N., Guo, G., & Zhang, D. (2019). Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Science of The Total Environment, 687, 460-469. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.05.400
Li, X., Shen, S., Xu, Y., Guo, T., Dai, H., & Lu, X. (2021). Application of membrane separation processes in phosphorus recovery: A review. Science of The Total Environment, 767, 144346. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144346
Li, X., Zhao, X., Zhang, J., Hao, J., & Zhang, Q. (2022). Struvite crystallization by using active serpentine: An innovative application for the economical and efficient recovery of phosphorus from black water. Water Research, 221, 118678. https://doi.org/https://doi.org/10.1016/j.watres.2022.118678
Li, Y., Xu, D., Lin, H., Wang, W., & Yang, H. (2023). Nutrient released characteristics of struvite-biochar fertilizer produced from concentrated sludge supernatant by fluidized bed reactor. Journal of Environmental Management, 325, 116548. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.116548
Liu, X., Wen, G., Hu, Z., & Wang, J. (2018). Coupling effects of pH and Mg/P ratio on P recovery from anaerobic digester supernatant by struvite formation. Journal of Cleaner Production, 198, 633-641. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.07.073
Liu, Y., & Qu, H. (2017). Interplay of digester supernatant composition and operating pH on impacting the struvite particulate properties. Journal of Environmental Chemical Engineering, 5(4), 3949-3955. https://doi.org/https://doi.org/10.1016/j.jece.2017.07.065
Lu, B., Xu, J., Zhang, M., Pang, W., & Xie, L. (2017). Phosphorus removal and recovery from wastewater by highly efficient struvite crystallization in an improved fluidized bed reactor. Korean Journal of Chemical Engineering, 34(11), 2879-2885. https://doi.org/10.1007/s11814-017-0203-1
Macha, I., Boonyang, U., Cazalbou, S., Ben-Nissan, B., Charvillat, C., Oktar, F., & Grossin, D. (2015). Comparative study of Coral Conversion, Part 2: Microstructural evolution of calcium phosphate. JOUrnal of the Australian Ceramic Society, 51, 149-159.
Martin-Hernandez, E., Garcia Hernandez, J. A., Gangapersad, S., Zhao, T., Omelon, S., Brouwer, R., & Vaneeckhaute, C. (2023). Multi-sectorial assessment of phosphorus in Ontario, Canada: Mapping flows and analysis of the potential for recovery and reuse. Resources, Conservation and Recycling, 197, 107108. https://doi.org/https://doi.org/10.1016/j.resconrec.2023.107108
Meesschaert, B., Monballiu, A., Ghyselbrecht, K., Van Goethem, C., Halleux, H., & Pinoy, L. (2020). Pilot scale recovery of phosphorus as calcium phosphate from nitrified UASB effluent of a potato processor and subsequent reuse in the wet process for phosphoric acid production. Journal of Environmental Chemical Engineering, 8(6), 104593. https://doi.org/https://doi.org/10.1016/j.jece.2020.104593
Mehta, C. M., & Batstone, D. J. (2013). Nucleation and growth kinetics of struvite crystallization. Water Research, 47(8), 2890-2900. https://doi.org/https://doi.org/10.1016/j.watres.2013.03.007
Mew, M. C. (2016). Phosphate rock costs, prices and resources interaction. Science of The Total Environment, 542, 1008-1012. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.08.045
Montastruc, L., Azzaro-Pantel, C., Biscans, B., Cabassud, M., & Domenech, S. (2003). A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chemical Engineering Journal, 94(1), 41-50. https://doi.org/https://doi.org/10.1016/S1385-8947(03)00044-5
Pahunang, R. R., Ballesteros, F. C., de Luna, M. D. G., Vilando, A. C., & Lu, M.-C. (2019). Optimum recovery of phosphate from simulated wastewater by unseeded fluidized-bed crystallization process. Separation and Purification Technology, 212, 783-790. https://doi.org/https://doi.org/10.1016/j.seppur.2018.11.087
Pastor, L., Mangin, D., Barat, R., & Seco, A. (2008). A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process. Bioresource Technology, 99(14), 6285-6291. https://doi.org/https://doi.org/10.1016/j.biortech.2007.12.003
Pastor, L., Marti, N., Bouzas, A., & Seco, A. (2008). Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresource Technology, 99(11), 4817-4824. https://doi.org/https://doi.org/10.1016/j.biortech.2007.09.054
Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.01.098
Ping, Q., Li, Y., Wu, X., Yang, L., & Wang, L. (2016). Characterization of morphology and component of struvite pellets crystallized from sludge dewatering liquor: Effects of total suspended solid and phosphate concentrations. Journal of Hazardous Materials, 310, 261-269. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.02.047
Priya, E., Kumar, S., Verma, C., Sarkar, S., & Maji, P. K. (2022). A comprehensive review on technological advances of adsorption for removing nitrate and phosphate from waste water. Journal of Water Process Engineering, 49, 103159.
Prywer, J., Torzewska, A., & P?oci?ski, T. (2012). Unique surface and internal structure of struvite crystals formed by Proteus mirabilis. Urological Research, 40(6), 699-707. https://doi.org/10.1007/s00240-012-0501-3
Qiu, L., Shi, L., Liu, Z., Xie, K., Wang, J., Zhang, S., Song, Q., & Lu, L. (2017). Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate. Ultrasonics Sonochemistry, 36, 123-128. https://doi.org/https://doi.org/10.1016/j.ultsonch.2016.11.019
Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Ra, C. S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arabian Journal of Chemistry, 7(1), 139-155. https://doi.org/https://doi.org/10.1016/j.arabjc.2013.10.007
Riewklang, K., Kaan Dereli, R., Nakason, K., Jin, G., & Panyapinyopol, B. (2024). Assessing phosphorus recovery from anaerobic digestion effluent of tapioca starch processing in a pilot – scale fluidized – bed homogeneous crystallizer: Effects of operation modes. Chemical Engineering Journal, 488, 150825. https://doi.org/https://doi.org/10.1016/j.cej.2024.150825
Ryu, H.-D., Choo, Y.-D., Kang, M.-K., & Lee, S.-I. (2014). Integrated application of struvite precipitation and biological treatment in treating autothermal thermophilic aerobic digestion supernatant liquid. Environmental Engineering Science, 31(4), 167-175.
Schott, C., Cunha, J. R., van der Weijden, R. D., & Buisman, C. (2022). Phosphorus recovery from pig manure: Dissolution of struvite and formation of calcium phosphate granules during anaerobic digestion with calcium addition. Chemical Engineering Journal, 437, 135406. https://doi.org/https://doi.org/10.1016/j.cej.2022.135406
Shaddel, S., Grini, T., Andreassen, J.-P., Osterhus, S. W., & Ucar, S. (2020). Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization. Chemosphere, 256, 126968. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.126968
Shaddel, S., Ucar, S., Andreassen, J.-P., & Osterhus, S. W. (2019a). Engineering of struvite crystals by regulating supersaturation – Correlation with phosphorus recovery, crystal morphology and process efficiency. Journal of Environmental Chemical Engineering, 7(1), 102918. https://doi.org/https://doi.org/10.1016/j.jece.2019.102918
Shaddel, S., Ucar, S., Andreassen, J.-P., & Osterhus, S. W. (2019b). Enhancing efficiency and economics of phosphorus recovery process by customizing the product based on sidestream characteristics–an alternative phosphorus recovery strategy. Water Science and technology, 79(9), 1777-1789.
Song, Y., Dai, Y., Hu, Q., Yu, X., & Qian, F. (2014). Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater. Chemosphere, 101, 41-48. https://doi.org/https://doi.org/10.1016/j.chemosphere.2013.11.019
U. Tosun, G., Sakhno, Y., & Jaisi, D. P. (2021). Synthesis of Hydroxyapatite Nanoparticles from Phosphorus Recovered from Animal Wastes. ACS Sustainable Chemistry & Engineering, 9(45), 15117-15126. https://doi.org/10.1021/acssuschemeng.1c01006
Van Der Houwen, J. A. M., & Valsami-Jones, E. (2001). The Application of Calcium Phosphate Precipitation Chemistry to Phosphorus Recovery: The Influence of Organic Ligands. Environmental Technology, 22(11), 1325-1335. https://doi.org/10.1080/09593332108618187
Van Kemenade, M., & De Bruyn, P. (1987). A kinetic study of precipitation from supersaturated calcium phosphate solutions. Journal of Colloid and Interface Science, 118(2), 564-585.
Vieillard, P., & Tardy, Y. (1984). Thermochemical Properties of Phosphates. In J. O. Nriagu & P. B. Moore (Eds.), Phosphate Minerals (pp. 171-198). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-61736-2_4
Vinardell, S., Cortina, J. L., & Valderrama, C. (2023). Environmental and economic evaluation of implementing membrane technologies and struvite crystallisation to recover nutrients from anaerobic digestion supernatant. Bioresource Technology, 384, 129326. https://doi.org/https://doi.org/10.1016/j.biortech.2023.129326
Wang, S.-N., Cao, J.-S., Luo, J.-Y., Ni, B.-J., & Fang, F. (2023). Revealing the mechanism of quartz sand seeding in accelerating phosphorus recovery from anaerobic fermentation supernatant through vivianite crystallization. Journal of Environmental Management, 348, 119223. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.119223
Wang, Z., Guo, Q., & Tian, L. (2022). Tracing phosphorus cycle in global watershed using phosphate oxygen isotopes. Science of The Total Environment, 829, 154611. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.154611
Wei, L., Zhang, T., Hong, T., Dong, Y., Ji, D., Luo, L., Li, R., Li, Z., & Tang, Y. (2023). Revealing and quantifying the effect of cattiite coprecipitation on the purity of K-struvite in aqueous solution. Journal of Environmental Chemical Engineering, 11(3), 109764. https://doi.org/https://doi.org/10.1016/j.jece.2023.109764
Yan, J., Ma, M., & Li, F. (2024). Phosphorus recovery via struvite crystallization in batch and fluidized-bed reactors: Roles of microplastics and dissolved organic matter. Journal of Hazardous Materials, 476, 135108. https://doi.org/https://doi.org/10.1016/j.jhazmat.2024.135108
Yang, M., Shi, J., Xu, Z., Zhu, S., & Cui, Y. (2019). Phosphorus removal and recovery from fosfomycin pharmaceutical wastewater by the induced crystallization process. Journal of Environmental Management, 231, 207-212. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.10.036
Ye, X., Ye, Z.-L., Lou, Y., Pan, S., Wang, X., Wang, M. K., & Chen, S. (2016). A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. Powder Technology, 295, 16-26. https://doi.org/https://doi.org/10.1016/j.powtec.2016.03.022
Yesigat, A., Worku, A., Mekonnen, A., Bae, W., Feyisa, G. L., Gatew, S., Han, J.-L., Liu, W., Wang, A., & Guadie, A. (2022). Phosphorus recovery as K-struvite from a waste stream: A review of influencing factors, advantages, disadvantages and challenges. Environmental Research, 214, 114086. https://doi.org/https://doi.org/10.1016/j.envres.2022.114086
Yuan, Z., Jiang, S., Sheng, H., Liu, X., Hua, H., Liu, X., & Zhang, Y. (2018). Human Perturbation of the Global Phosphorus Cycle: Changes and Consequences. Environmental Science & Technology, 52(5), 2438-2450. https://doi.org/10.1021/acs.est.7b03910
Zhang, D.-m., Chen, Y.-x., Jilani, G., Wu, W.-x., Liu, W.-l., & Han, Z.-y. (2012). Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants. Bioresource Technology, 116, 386-395.
Zhou, Z., Hu, D., Ren, W., Zhao, Y., Jiang, L.-M., & Wang, L. (2015). Effect of humic substances on phosphorus removal by struvite precipitation. Chemosphere, 141, 94-99. https://doi.org/https://doi.org/10.1016/j.chemosphere.2015.06.089
吳峻豪. (2013). 流體化床磷酸銨鎂結晶回收污水處理廠磷之研究 朝陽科技大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/jy4r54
洪再生. (1996). 流體化床結晶技術回收廢水中重金屬銅之探討 國立中央大學]. 臺灣博碩士論文知識加值系統. 桃園縣. https://hdl.handle.net/11296/v72hm5
莊順興、林聖諺、孫耀鴻 (2022) 。公共污水處理廠磷資源回收再利用之潛力及技術介紹。下水道.水再生期刊,1:2 2022.11[民111.11] , 27-41。 |