博碩士論文 111326011 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.191.139.131
姓名 秦維潔(Wei-Chieh Chin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 公共污水處理廠污泥脫水濾液流體化床結晶產物特性之研究
(A study of crystals characteristics of FBC reactor for resource recovery from sludge dewatering filtrate)
相關論文
★ 以SDI與MFI指標評估工業廢水回收再利用之機會:以某散熱器製造業為例★ 以反應曲面法探討流體化床結晶回收磷酸亞鐵之影響因子
★ 活性污泥異營與自營脫硝 反應動力特性之研究★ 沼渣施用對土壤及滲出水之重金屬成份影響分析
★ 脈衝式曝氣對沉浸式薄膜生物處理系統 積垢控制之探討★ 以聚合硫酸鐵進行污泥調理脫水之綜合效能評估
★ 以低亞硫酸鈉進行自營性脫硝反應之可行性研究★ 污泥脫水濾液無機物成分之結垢潛勢研究
★ 硫氮比、pH與溶氧對還原性硫化物自營脫硝反應之影響★ 以海水提升流體化床磷酸銨鎂結晶 之可行性研究
★ 超音波水解生物污泥機制探討★ 生物除氮程序(MLE Process)效能評估及污泥活性探討
★ 活性污泥除氮程序(OAO Process)效能評估與設計參數探討★ 廢水處理廠 COD 和 TN 水質細分類 與脫硝效率之研究
★ 硫代硫酸鹽自營性脫硝之反應動力與亞硝酸鹽氮累積特性探討★ 以RO濃排水提升流體化床磷酸鹽結晶之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2026-12-31以後開放)
摘要(中) 磷為不可再生資源且為生命體組成的重要營養物質之一,當過多的磷排放至水體當中不僅對於生態產生負面影響,亦對人體造成危害。而面對大量的磷資源流失,如何有效地將其資源化及回收,並同時達到循環經濟,是現階段較受矚目的議題。本研究預計使用流體化床結晶技術,從厭氧消化污泥脫水濾液中回收磷,並探討調整流體化床pH值對於晶體結構的改變。
首先,探討實際厭氧消化脫水濾液中較適合結晶之pH範圍,而本研究所採取pH範圍為8.0至9.5之間,經長期結晶試驗後,其結果顯示於pH = 9時,展現最佳磷去除率為64.4 %以及磷結晶率56.4 %。其次,選擇最佳pH範圍為9的條件下進行Mg2+離子之添加,使其Mg/P比為1.2的條件下進行長期試驗,而其結果表明最佳磷去除率達89.8 %、磷結晶率達85.4 %,因此本研究確認pH以及Mg/P比對於結晶均具有顯著影響。
SEM結果表明當水中含有懸浮固體時,其結晶外觀呈粗糙且具有不規則裂痕;而水中含有機物時,其結晶形態呈現矩形塊狀。此外,較高的迴流比以及上流速度會使結晶的表面較為光滑,故水中雜質(懸浮固體、有機物)以及操作條件(上流速度、迴流比)對於結晶形態有顯著的影響。
據XRD結果表明,Ⅰ、Ⅱ、Ⅲ階段其結晶產物為混晶,其包括羥基磷灰石、磷酸鎂以及磷酸銨鎂;Ⅳ、Ⅴ階段結晶產物為磷酸銨鎂、磷酸鎂以及第Ⅵ階段為磷酸鎂,且於第Ⅳ階段XRD圖中發現衍射峰有明顯的偏移,係由於晶體中Ca2+的存在所導致。此外,篩分析結果表明,本研究所採集之晶體粒徑尺寸主要為0.6–0.85 mm,而於第Ⅲ階段可發現超過1.18 mm之晶體存在,這是由於高晶核密度所導致。
摘要(英) Phosphorus is a non-renewable resource and one of the essential nutrients for living organisms. When excessive phosphorus is discharged into water bodies, it not only negatively impacts the ecosystem but also poses a risk to human health. In the face of significant phosphorus resource loss, how to effectively recycle and resource phosphorus while achieving a circular economy has become a highly focused issue. This study plans to use fluidized bed crystallization technology to recover phosphorus from dewatering filtrate of anaerobically digested sludge and explore how adjusting the pH value of the fluidized bed affects the crystal structure.
First, the study investigates the optimal pH range for crystallization in actual dewatering filtrate from anaerobic digestion. The pH range chosen for this study is between 8.0 and 9.5. After long-term crystallization experiments, the results show that at pH = 9, the best phosphorus removal rate was 64.4 % and the phosphorus crystallization rate was 56.4 %. Next, under the optimal pH range of 9, Mg2+ ions were added to achieve a Mg/P ratio of 1.2 for long-term testing. The results showed that the best phosphorus removal rate reached 89.8 %, and the phosphorus crystallization rate reached 85.4 %. Therefore, this study confirms that both pH and the Mg/P ratio have a significant impact on crystallization.
SEM results indicate that when suspended solids are present in the water, the crystal appearance is rough with irregular cracks. When organic matter is present, the crystal shape is rectangular and block-like. Additionally, a higher recirculation ratio and upward flow velocity result in smoother crystal surfaces. Therefore, the presence of impurities (suspended solids, organic matter) in the water and operational conditions (upflow velocity, recycle ratio) have a significant impact on crystal morphology.
According to the XRD results, during stages I, II, and III, the crystallized products are mixed crystals, including hydroxyapatite, magnesium phosphate, and ammonium magnesium phosphate. During stages IV and V, the crystallized products are ammonium magnesium phosphate and magnesium phosphate, and in stage VI, the product is magnesium phosphate. Additionally, in the XRD pattern of stage IV, a noticeable shift in the diffraction peaks is observed, which is caused by the presence of Ca2+ ions in the crystals. Additionally, sieve analysis results indicate that the crystal size collected in this study is mainly between 0.6 – 0.85 mm, while crystals larger than 1.18 mm are observed in stage III due to the high crystal nucleation density.
關鍵字(中) ★ 磷回收
★ 厭氧消化污泥脫水濾液
★ 流體化床異相結晶
★ 磷酸銨鎂
★ 羥基磷灰石
關鍵字(英)
論文目次 摘要 i
Abstract ii
圖摘要 iv
致謝 v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
1.3研究重要性與創新性 2
第二章 文獻回顧 3
2.1磷 3
2.1.1磷循環 3
2.1.2磷流佈 5
2.1.3磷回收技術 9
2.2厭氧消化污泥脫水濾液 10
2.2.1廢水處理廠污泥脫水流程 10
2.2.2厭氧消化污泥脫水濾液特性 11
2.3流體化床 14
2.3.1流體化床原理 14
2.3.2結晶機制 15
2.3.3流體化床操作參數 16
2.4磷酸鹽 19
2.4.1磷酸鈣鹽類結晶之特性 23
2.4.2磷酸鎂鹽類結晶之特性 24
2.4.4磷源和氨源 26
2.4.5鎂源 26
2.4.5結晶參數 27
第三章 研究方法 31
3.1研究流程及步驟 31
3.2實驗方法 33
3.2.1水質分析 33
3.2.2流體化床長期結晶實驗 33
3.3實驗設備及藥品 37
3.3.1分光光度計(UV-Vis) 38
3.3.2感應耦合電漿光學發射光譜儀(ICP-OES) 39
3.3.3掃描式電子顯微鏡/能量散射光譜儀(SEM/EDS) 39
3.3.4 X光繞射儀(XRD) 40
3.3.5篩分析 40
第四章 結果與討論 41
4.1流體化床長期試驗 41
4.1.1各階段厭氧消化污泥脫水濾液水質特性分析 41
4.1.3評估不同條件下對於效率之影響 52
4.2晶相分析 63
4.2.1 SEM 63
4.2.2 EDS 65
4.2.3 XRD 81
4.3篩分析 86
第五章 結論與建議 89
5.1結論 89
5.2建議 90
參考文獻 91
參考文獻 Abarca, R. R. M., Pusta, R. S., Labad, R. B., Andit, J. L. A., Rejas, C. M., de Luna, M. D. G., & Lu, M. C. (2017). Chapter Fourteen - Effect of Upflow Velocity on Nutrient Recovery from Swine Wastewater by Fluidized Bed Struvite Crystallization. In S. Ahuja (Ed.), Chemistry and Water (pp. 511-518). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809330-6.00014-3
Bacelo, H., Pintor, A. M. A., Santos, S. C. R., Boaventura, R. A. R., & Botelho, C. M. S. (2020). Performance and prospects of different adsorbents for phosphorus uptake and recovery from water. Chemical Engineering Journal, 381, 122566. https://doi.org/https://doi.org/10.1016/j.cej.2019.122566
Battistoni, P., De Angelis, A., Prisciandaro, M., Boccadoro, R., & Bolzonella, D. (2002). P removal from anaerobic supernatants by struvite crystallization: long term validation and process modelling. Water Research, 36(8), 1927-1938. https://doi.org/https://doi.org/10.1016/S0043-1354(01)00401-8
Bradford-Hartke, Z., Razmjou, A., & Gregory, L. (2021). Factors affecting phosphorus recovery as struvite: Effects of alternative magnesium sources. Desalination, 504, 114949. https://doi.org/https://doi.org/10.1016/j.desal.2021.114949
Caddarao, P. S., Garcia-Segura, S., Ballesteros, F. C., Huang, Y.-H., & Lu, M.-C. (2018). Phosphorous recovery by means of fluidized bed homogeneous crystallization of calcium phosphate. Influence of operational variables and electrolytes on brushite homogeneous crystallization. Journal of the Taiwan Institute of Chemical Engineers, 83, 124-132. https://doi.org/https://doi.org/10.1016/j.jtice.2017.12.009
Carella, F., Degli Esposti, L., Adamiano, A., & Iafisco, M. (2021). The use of calcium phosphates in cosmetics, state of the art and future perspectives. Materials, 14(21), 6398.
Chang, K.-Y., Mahasti, N. N. N., & Huang, Y.-H. (2023). Fluidized-bed homogeneous crystallization of α-Al(OH)3 for continuous aluminum removal from aqueous solution: Parameter optimization and crystallization mechanism. Journal of Water Process Engineering, 53, 103700. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103700
Chang, K.-Y., Mahasti, N. N. N., & Huang, Y.-H. (2024). Brine treatment using fluidized bed homogeneous crystallization technology for the simultaneous recovery of calcium and magnesium as dolomite-like granules. Journal of Environmental Chemical Engineering, 12(5), 113792. https://doi.org/https://doi.org/10.1016/j.jece.2024.113792
Chen, C.-S., Shih, Y.-J., & Huang, Y.-H. (2015). Remediation of lead (Pb(II)) wastewater through recovery of lead carbonate in a fluidized-bed homogeneous crystallization (FBHC) system. Chemical Engineering Journal, 279, 120-128. https://doi.org/https://doi.org/10.1016/j.cej.2015.05.013
Chen, M., & Graedel, T. E. (2016). A half-century of global phosphorus flows, stocks, production, consumption, recycling, and environmental impacts. Global Environmental Change, 36, 139-152. https://doi.org/https://doi.org/10.1016/j.gloenvcha.2015.12.005
Dai, H., Lu, X., Peng, Y., Yang, Z., & Zhsssu, H. (2017). Effects of supersaturation control strategies on hydroxyapatite (HAP) crystallization for phosphorus recovery from wastewater. Environmental Science and Pollution Research, 24, 5791-5799.
Deng, L., & Dhar, B. R. (2023). Phosphorus recovery from wastewater via calcium phosphate precipitation: A critical review of methods, progress, and insights. Chemosphere, 330, 138685. https://doi.org/https://doi.org/10.1016/j.chemosphere.2023.138685
Fattah, K. P., Mavinic, D. S., & Koch, F. A. (2012). Influence of Process Parameters on the Characteristics of Struvite Pellets. Journal of Environmental Engineering, 138(12), 1200-1209. https://doi.org/doi:10.1061/(ASCE)EE.1943-7870.0000576
Ferguson, S., Morris, G., Hao, H., Barrett, M., & Glennon, B. (2014). Automated self seeding of batch crystallizations via plug flow seed generation. Chemical Engineering Research and Design, 92(11), 2534-2541. https://doi.org/https://doi.org/10.1016/j.cherd.2014.01.028
Frasnelli, M., & Sglavo, V. M. (2016). Effect of Mg2+ doping on beta–alpha phase transition in tricalcium phosphate (TCP) bioceramics. Acta Biomaterialia, 33, 283-289. https://doi.org/https://doi.org/10.1016/j.actbio.2016.01.015
Goyette, J.-O., Bennett, E. M., Howarth, R. W., & Maranger, R. (2016). Changes in anthropogenic nitrogen and phosphorus inputs to the St. Lawrence sub-basin over 110?years and impacts on riverine export. Global Biogeochemical Cycles, 30(7), 1000-1014. https://doi.org/https://doi.org/10.1002/2016GB005384
Guadie, A., Belay, A., Liu, W., Yesigat, A., Hao, X., & Wang, A. (2020). Rift Valley Lake as a potential magnesium source to recover phosphorus from urine. Environmental Research, 184, 109363. https://doi.org/https://doi.org/10.1016/j.envres.2020.109363
Guadie, A., Xia, S., Jiang, W., Zhou, L., Zhang, Z., Hermanowicz, S. W., Xu, X., & Shen, S. (2014). Enhanced struvite recovery from wastewater using a novel cone-inserted fluidized bed reactor. Journal of Environmental Sciences, 26(4), 765-774. https://doi.org/https://doi.org/10.1016/S1001-0742(13)60469-6
Guan, Q., Zeng, G., Gong, B., Li, Y., Ji, H., Zhang, J., Song, J., Liu, C., Wang, Z., & Deng, C. (2021). Phosphorus recovery and iron, copper precipitation from swine wastewater via struvite crystallization using various magnesium compounds. Journal of Cleaner Production, 328, 129588. https://doi.org/https://doi.org/10.1016/j.jclepro.2021.129588
Guan, Q., Zeng, G., Song, J., Li, Y., Yang, L., Wang, Z., & Liu, C. (2021). Highly efficient phosphorus and potassium recovery from urine via crystallization process in a fluidized bed reactor system. Journal of Environmental Chemical Engineering, 9(4), 105623. https://doi.org/https://doi.org/10.1016/j.jece.2021.105623
Gui, L., Yang, H., Huang, H., Hu, C., Feng, Y., & Wang, X. (2022). Liquid solid fluidized bed crystallization granulation technology: Development, applications, properties, and prospects. Journal of Water Process Engineering, 45, 102513. https://doi.org/https://doi.org/10.1016/j.jwpe.2021.102513
Ha, T.-H., Mahasti, N. N. N., Ha, H.-Q., Liao, P.-L., Huang, Y.-H., & Lu, M.-C. (2024). Recovery of nitrogen as struvite from swine wastewater: Comparison study of batch and continuous fluidized-bed crystallization process. Separation and Purification Technology, 351, 128045. https://doi.org/https://doi.org/10.1016/j.seppur.2024.128045
Ha, T.-H., Mahasti, N. N. N., Lin, C.-S., Lu, M.-C., & Huang, Y.-H. (2023). Enhanced struvite (MgNH4PO4·6H2O) granulation and separation from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Journal of Water Process Engineering, 53, 103855. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103855
Ha, T.-H., Mahasti, N. N. N., Lu, M.-C., & Huang, Y.-H. (2022). Application of low-solubility dolomite as seed material for phosphorus recovery from synthetic wastewater using fluidized-bed crystallization (FBC) technology. Separation and Purification Technology, 303, 122192. https://doi.org/https://doi.org/10.1016/j.seppur.2022.122192
Han, L.-J., Li, J.-S., Xue, Q., Guo, M.-Z., Wang, P., & Poon, C. S. (2022). Enzymatically induced phosphate precipitation (EIPP) for stabilization/solidification (S/S) treatment of heavy metal tailings. Construction and Building Materials, 314, 125577. https://doi.org/https://doi.org/10.1016/j.conbuildmat.2021.125577
Hao, X.-D., Wang, C.-C., Lan, L., & van Loosdrecht, M. C. M. (2008). Struvite formation, analytical methods and effects of pH and Ca2?+? Water Science and technology, 58(8), 1687-1692. https://doi.org/10.2166/wst.2008.557
Jin, X., Guo, J., Hossain, M. F., Lu, J., Lu, Q., Zhou, Y., & Zhou, Y. (2024). Recent advances in the removal and recovery of phosphorus from aqueous solution by metal-based adsorbents: A review. Resources, Conservation and Recycling, 204, 107464. https://doi.org/https://doi.org/10.1016/j.resconrec.2024.107464
Karapinar, N., Hoffmann, E., & Hahn, H. H. (2006). P-recovery by secondary nucleation and growth of calcium phosphates on magnetite mineral. Water Research, 40(6), 1210-1216. https://doi.org/https://doi.org/10.1016/j.watres.2005.12.041
Kataki, S., West, H., Clarke, M., & Baruah, D. C. (2016). Phosphorus recovery as struvite: Recent concerns for use of seed, alternative Mg source, nitrogen conservation and fertilizer potential. Resources, Conservation and Recycling, 107, 142-156. https://doi.org/https://doi.org/10.1016/j.resconrec.2015.12.009
K?l?c, M., Y?lmaz, T., Partal, R., ??k, E., Do?an, O., Kitis, M., & Sahinkaya, E. (2023). Nutrient recovery from anaerobic digester supernatant using a fluidized-bed reactor. Journal of Water Process Engineering, 54, 103950. https://doi.org/https://doi.org/10.1016/j.jwpe.2023.103950
Kim, T.-H., Nam, Y.-K., & Lim, S. J. (2014). Effects of ionizing radiation on struvite crystallization of livestock wastewater. Radiation Physics and Chemistry, 97, 332-336.
Kovrlija, I., Locs, J., & Loca, D. (2021). Octacalcium phosphate: Innovative vehicle for the local biologically active substance delivery in bone regeneration. Acta Biomaterialia, 135, 27-47. https://doi.org/https://doi.org/10.1016/j.actbio.2021.08.021
Krishnamoorthy, N., Dey, B., Unpaprom, Y., Ramaraj, R., Maniam, G. P., Govindan, N., Jayaraman, S., Arunachalam, T., & Paramasivan, B. (2021). Engineering principles and process designs for phosphorus recovery as struvite: A comprehensive review. Journal of Environmental Chemical Engineering, 9(5), 105579. https://doi.org/https://doi.org/10.1016/j.jece.2021.105579
Langenfeld, N., Kusuma, P., Wallentine, T., Criddle, C., Seefeldt, L., & Bugbee, B. (2021). Optimizing Nitrogen Fixation and Recycling for Food Production in Regenerative Life Support Systems. Frontiers in Astronomy and Space Sciences, 8. https://doi.org/10.3389/fspas.2021.699688
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., Jefferson, B., & Parsons, S. A. (2007). Struvite crystallisation and recovery using a stainless steel structure as a seed material. Water Research, 41(11), 2449-2456. https://doi.org/https://doi.org/10.1016/j.watres.2007.03.002
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2005). Impact of calcium on struvite crystal size, shape and purity. Journal of Crystal Growth, 283(3), 514-522. https://doi.org/https://doi.org/10.1016/j.jcrysgro.2005.06.012
Le Corre, K. S., Valsami-Jones, E., Hobbs, P., & Parsons, S. A. (2009). Phosphorus Recovery from Wastewater by Struvite Crystallization: A Review. Critical Reviews in Environmental Science and Technology, 39(6), 433-477. https://doi.org/10.1080/10643380701640573
Le, M.-V., Duy, T. H. T., Dang, B.-T., Luan, V. H., Huynh, N.-D.-T., Long, N. Q., & Phuong, L. C. N. (2024). Phosphorus recovery from fertilizer industrial wastewaters using bittern: Influence of wastewater composition and pH on struvite formation. Bioresource Technology Reports, 25, 101752. https://doi.org/https://doi.org/10.1016/j.biteb.2023.101752
Le, V.-G., Vo, D.-V. N., Nguyen, N.-H., Shih, Y.-J., Vu, C.-T., Liao, C.-H., & Huang, Y.-H. (2021). Struvite recovery from swine wastewater using fluidized-bed homogeneous granulation process. Journal of Environmental Chemical Engineering, 9(3), 105019. https://doi.org/https://doi.org/10.1016/j.jece.2020.105019
Le, V.-G., Vu, C.-T., Shih, Y.-J., Bui, X.-T., Liao, C.-H., & Huang, Y.-H. (2020). Phosphorus and potassium recovery from human urine using a fluidized bed homogeneous crystallization (FBHC) process. Chemical Engineering Journal, 384, 123282. https://doi.org/https://doi.org/10.1016/j.cej.2019.123282
Leng, Y., Colston, R., & Soares, A. (2020). Understanding the biochemical characteristics of struvite bio-mineralising microorganisms and their future in nutrient recovery. Chemosphere, 247, 125799. https://doi.org/https://doi.org/10.1016/j.chemosphere.2019.125799
Li, B., Boiarkina, I., Young, B., & Yu, W. (2016). Quantification and mitigation of the negative impact of calcium on struvite purity. Advanced Powder Technology, 27(6), 2354-2362. https://doi.org/https://doi.org/10.1016/j.apt.2016.10.003
Li, B., Huang, H. M., Boiarkina, I., Yu, W., Huang, Y. F., Wang, G. Q., & Young, B. R. (2019). Phosphorus recovery through struvite crystallisation: Recent developments in the understanding of operational factors. Journal of Environmental Management, 248, 109254. https://doi.org/https://doi.org/10.1016/j.jenvman.2019.07.025
Li, B., Udugama, I. A., Mansouri, S. S., Yu, W., Baroutian, S., Gernaey, K. V., & Young, B. R. (2019). An exploration of barriers for commercializing phosphorus recovery technologies. Journal of Cleaner Production, 229, 1342-1354. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.05.042
Li, J., Li, B., Huang, H., Lv, X., Zhao, N., Guo, G., & Zhang, D. (2019). Removal of phosphate from aqueous solution by dolomite-modified biochar derived from urban dewatered sewage sludge. Science of The Total Environment, 687, 460-469. https://doi.org/https://doi.org/10.1016/j.scitotenv.2019.05.400
Li, X., Shen, S., Xu, Y., Guo, T., Dai, H., & Lu, X. (2021). Application of membrane separation processes in phosphorus recovery: A review. Science of The Total Environment, 767, 144346. https://doi.org/https://doi.org/10.1016/j.scitotenv.2020.144346
Li, X., Zhao, X., Zhang, J., Hao, J., & Zhang, Q. (2022). Struvite crystallization by using active serpentine: An innovative application for the economical and efficient recovery of phosphorus from black water. Water Research, 221, 118678. https://doi.org/https://doi.org/10.1016/j.watres.2022.118678
Li, Y., Xu, D., Lin, H., Wang, W., & Yang, H. (2023). Nutrient released characteristics of struvite-biochar fertilizer produced from concentrated sludge supernatant by fluidized bed reactor. Journal of Environmental Management, 325, 116548. https://doi.org/https://doi.org/10.1016/j.jenvman.2022.116548
Liu, X., Wen, G., Hu, Z., & Wang, J. (2018). Coupling effects of pH and Mg/P ratio on P recovery from anaerobic digester supernatant by struvite formation. Journal of Cleaner Production, 198, 633-641. https://doi.org/https://doi.org/10.1016/j.jclepro.2018.07.073
Liu, Y., & Qu, H. (2017). Interplay of digester supernatant composition and operating pH on impacting the struvite particulate properties. Journal of Environmental Chemical Engineering, 5(4), 3949-3955. https://doi.org/https://doi.org/10.1016/j.jece.2017.07.065
Lu, B., Xu, J., Zhang, M., Pang, W., & Xie, L. (2017). Phosphorus removal and recovery from wastewater by highly efficient struvite crystallization in an improved fluidized bed reactor. Korean Journal of Chemical Engineering, 34(11), 2879-2885. https://doi.org/10.1007/s11814-017-0203-1
Macha, I., Boonyang, U., Cazalbou, S., Ben-Nissan, B., Charvillat, C., Oktar, F., & Grossin, D. (2015). Comparative study of Coral Conversion, Part 2: Microstructural evolution of calcium phosphate. JOUrnal of the Australian Ceramic Society, 51, 149-159.
Martin-Hernandez, E., Garcia Hernandez, J. A., Gangapersad, S., Zhao, T., Omelon, S., Brouwer, R., & Vaneeckhaute, C. (2023). Multi-sectorial assessment of phosphorus in Ontario, Canada: Mapping flows and analysis of the potential for recovery and reuse. Resources, Conservation and Recycling, 197, 107108. https://doi.org/https://doi.org/10.1016/j.resconrec.2023.107108
Meesschaert, B., Monballiu, A., Ghyselbrecht, K., Van Goethem, C., Halleux, H., & Pinoy, L. (2020). Pilot scale recovery of phosphorus as calcium phosphate from nitrified UASB effluent of a potato processor and subsequent reuse in the wet process for phosphoric acid production. Journal of Environmental Chemical Engineering, 8(6), 104593. https://doi.org/https://doi.org/10.1016/j.jece.2020.104593
Mehta, C. M., & Batstone, D. J. (2013). Nucleation and growth kinetics of struvite crystallization. Water Research, 47(8), 2890-2900. https://doi.org/https://doi.org/10.1016/j.watres.2013.03.007
Mew, M. C. (2016). Phosphate rock costs, prices and resources interaction. Science of The Total Environment, 542, 1008-1012. https://doi.org/https://doi.org/10.1016/j.scitotenv.2015.08.045
Montastruc, L., Azzaro-Pantel, C., Biscans, B., Cabassud, M., & Domenech, S. (2003). A thermochemical approach for calcium phosphate precipitation modeling in a pellet reactor. Chemical Engineering Journal, 94(1), 41-50. https://doi.org/https://doi.org/10.1016/S1385-8947(03)00044-5
Pahunang, R. R., Ballesteros, F. C., de Luna, M. D. G., Vilando, A. C., & Lu, M.-C. (2019). Optimum recovery of phosphate from simulated wastewater by unseeded fluidized-bed crystallization process. Separation and Purification Technology, 212, 783-790. https://doi.org/https://doi.org/10.1016/j.seppur.2018.11.087
Pastor, L., Mangin, D., Barat, R., & Seco, A. (2008). A pilot-scale study of struvite precipitation in a stirred tank reactor: Conditions influencing the process. Bioresource Technology, 99(14), 6285-6291. https://doi.org/https://doi.org/10.1016/j.biortech.2007.12.003
Pastor, L., Marti, N., Bouzas, A., & Seco, A. (2008). Sewage sludge management for phosphorus recovery as struvite in EBPR wastewater treatment plants. Bioresource Technology, 99(11), 4817-4824. https://doi.org/https://doi.org/10.1016/j.biortech.2007.09.054
Peng, L., Dai, H., Wu, Y., Peng, Y., & Lu, X. (2018). A comprehensive review of phosphorus recovery from wastewater by crystallization processes. Chemosphere, 197, 768-781. https://doi.org/https://doi.org/10.1016/j.chemosphere.2018.01.098
Ping, Q., Li, Y., Wu, X., Yang, L., & Wang, L. (2016). Characterization of morphology and component of struvite pellets crystallized from sludge dewatering liquor: Effects of total suspended solid and phosphate concentrations. Journal of Hazardous Materials, 310, 261-269. https://doi.org/https://doi.org/10.1016/j.jhazmat.2016.02.047
Priya, E., Kumar, S., Verma, C., Sarkar, S., & Maji, P. K. (2022). A comprehensive review on technological advances of adsorption for removing nitrate and phosphate from waste water. Journal of Water Process Engineering, 49, 103159.
Prywer, J., Torzewska, A., & P?oci?ski, T. (2012). Unique surface and internal structure of struvite crystals formed by Proteus mirabilis. Urological Research, 40(6), 699-707. https://doi.org/10.1007/s00240-012-0501-3
Qiu, L., Shi, L., Liu, Z., Xie, K., Wang, J., Zhang, S., Song, Q., & Lu, L. (2017). Effect of power ultrasound on crystallization characteristics of magnesium ammonium phosphate. Ultrasonics Sonochemistry, 36, 123-128. https://doi.org/https://doi.org/10.1016/j.ultsonch.2016.11.019
Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Ra, C. S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization – A review. Arabian Journal of Chemistry, 7(1), 139-155. https://doi.org/https://doi.org/10.1016/j.arabjc.2013.10.007
Riewklang, K., Kaan Dereli, R., Nakason, K., Jin, G., & Panyapinyopol, B. (2024). Assessing phosphorus recovery from anaerobic digestion effluent of tapioca starch processing in a pilot – scale fluidized – bed homogeneous crystallizer: Effects of operation modes. Chemical Engineering Journal, 488, 150825. https://doi.org/https://doi.org/10.1016/j.cej.2024.150825
Ryu, H.-D., Choo, Y.-D., Kang, M.-K., & Lee, S.-I. (2014). Integrated application of struvite precipitation and biological treatment in treating autothermal thermophilic aerobic digestion supernatant liquid. Environmental Engineering Science, 31(4), 167-175.
Schott, C., Cunha, J. R., van der Weijden, R. D., & Buisman, C. (2022). Phosphorus recovery from pig manure: Dissolution of struvite and formation of calcium phosphate granules during anaerobic digestion with calcium addition. Chemical Engineering Journal, 437, 135406. https://doi.org/https://doi.org/10.1016/j.cej.2022.135406
Shaddel, S., Grini, T., Andreassen, J.-P., Osterhus, S. W., & Ucar, S. (2020). Crystallization kinetics and growth of struvite crystals by seawater versus magnesium chloride as magnesium source: towards enhancing sustainability and economics of struvite crystallization. Chemosphere, 256, 126968. https://doi.org/https://doi.org/10.1016/j.chemosphere.2020.126968
Shaddel, S., Ucar, S., Andreassen, J.-P., & Osterhus, S. W. (2019a). Engineering of struvite crystals by regulating supersaturation – Correlation with phosphorus recovery, crystal morphology and process efficiency. Journal of Environmental Chemical Engineering, 7(1), 102918. https://doi.org/https://doi.org/10.1016/j.jece.2019.102918
Shaddel, S., Ucar, S., Andreassen, J.-P., & Osterhus, S. W. (2019b). Enhancing efficiency and economics of phosphorus recovery process by customizing the product based on sidestream characteristics–an alternative phosphorus recovery strategy. Water Science and technology, 79(9), 1777-1789.
Song, Y., Dai, Y., Hu, Q., Yu, X., & Qian, F. (2014). Effects of three kinds of organic acids on phosphorus recovery by magnesium ammonium phosphate (MAP) crystallization from synthetic swine wastewater. Chemosphere, 101, 41-48. https://doi.org/https://doi.org/10.1016/j.chemosphere.2013.11.019
U. Tosun, G., Sakhno, Y., & Jaisi, D. P. (2021). Synthesis of Hydroxyapatite Nanoparticles from Phosphorus Recovered from Animal Wastes. ACS Sustainable Chemistry & Engineering, 9(45), 15117-15126. https://doi.org/10.1021/acssuschemeng.1c01006
Van Der Houwen, J. A. M., & Valsami-Jones, E. (2001). The Application of Calcium Phosphate Precipitation Chemistry to Phosphorus Recovery: The Influence of Organic Ligands. Environmental Technology, 22(11), 1325-1335. https://doi.org/10.1080/09593332108618187
Van Kemenade, M., & De Bruyn, P. (1987). A kinetic study of precipitation from supersaturated calcium phosphate solutions. Journal of Colloid and Interface Science, 118(2), 564-585.
Vieillard, P., & Tardy, Y. (1984). Thermochemical Properties of Phosphates. In J. O. Nriagu & P. B. Moore (Eds.), Phosphate Minerals (pp. 171-198). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-61736-2_4
Vinardell, S., Cortina, J. L., & Valderrama, C. (2023). Environmental and economic evaluation of implementing membrane technologies and struvite crystallisation to recover nutrients from anaerobic digestion supernatant. Bioresource Technology, 384, 129326. https://doi.org/https://doi.org/10.1016/j.biortech.2023.129326
Wang, S.-N., Cao, J.-S., Luo, J.-Y., Ni, B.-J., & Fang, F. (2023). Revealing the mechanism of quartz sand seeding in accelerating phosphorus recovery from anaerobic fermentation supernatant through vivianite crystallization. Journal of Environmental Management, 348, 119223. https://doi.org/https://doi.org/10.1016/j.jenvman.2023.119223
Wang, Z., Guo, Q., & Tian, L. (2022). Tracing phosphorus cycle in global watershed using phosphate oxygen isotopes. Science of The Total Environment, 829, 154611. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.154611
Wei, L., Zhang, T., Hong, T., Dong, Y., Ji, D., Luo, L., Li, R., Li, Z., & Tang, Y. (2023). Revealing and quantifying the effect of cattiite coprecipitation on the purity of K-struvite in aqueous solution. Journal of Environmental Chemical Engineering, 11(3), 109764. https://doi.org/https://doi.org/10.1016/j.jece.2023.109764
Yan, J., Ma, M., & Li, F. (2024). Phosphorus recovery via struvite crystallization in batch and fluidized-bed reactors: Roles of microplastics and dissolved organic matter. Journal of Hazardous Materials, 476, 135108. https://doi.org/https://doi.org/10.1016/j.jhazmat.2024.135108
Yang, M., Shi, J., Xu, Z., Zhu, S., & Cui, Y. (2019). Phosphorus removal and recovery from fosfomycin pharmaceutical wastewater by the induced crystallization process. Journal of Environmental Management, 231, 207-212. https://doi.org/https://doi.org/10.1016/j.jenvman.2018.10.036
Ye, X., Ye, Z.-L., Lou, Y., Pan, S., Wang, X., Wang, M. K., & Chen, S. (2016). A comprehensive understanding of saturation index and upflow velocity in a pilot-scale fluidized bed reactor for struvite recovery from swine wastewater. Powder Technology, 295, 16-26. https://doi.org/https://doi.org/10.1016/j.powtec.2016.03.022
Yesigat, A., Worku, A., Mekonnen, A., Bae, W., Feyisa, G. L., Gatew, S., Han, J.-L., Liu, W., Wang, A., & Guadie, A. (2022). Phosphorus recovery as K-struvite from a waste stream: A review of influencing factors, advantages, disadvantages and challenges. Environmental Research, 214, 114086. https://doi.org/https://doi.org/10.1016/j.envres.2022.114086
Yuan, Z., Jiang, S., Sheng, H., Liu, X., Hua, H., Liu, X., & Zhang, Y. (2018). Human Perturbation of the Global Phosphorus Cycle: Changes and Consequences. Environmental Science & Technology, 52(5), 2438-2450. https://doi.org/10.1021/acs.est.7b03910
Zhang, D.-m., Chen, Y.-x., Jilani, G., Wu, W.-x., Liu, W.-l., & Han, Z.-y. (2012). Optimization of struvite crystallization protocol for pretreating the swine wastewater and its impact on subsequent anaerobic biodegradation of pollutants. Bioresource Technology, 116, 386-395.
Zhou, Z., Hu, D., Ren, W., Zhao, Y., Jiang, L.-M., & Wang, L. (2015). Effect of humic substances on phosphorus removal by struvite precipitation. Chemosphere, 141, 94-99. https://doi.org/https://doi.org/10.1016/j.chemosphere.2015.06.089
吳峻豪. (2013). 流體化床磷酸銨鎂結晶回收污水處理廠磷之研究 朝陽科技大學]. 臺灣博碩士論文知識加值系統. 台中市. https://hdl.handle.net/11296/jy4r54
洪再生. (1996). 流體化床結晶技術回收廢水中重金屬銅之探討 國立中央大學]. 臺灣博碩士論文知識加值系統. 桃園縣. https://hdl.handle.net/11296/v72hm5
莊順興、林聖諺、孫耀鴻 (2022) 。公共污水處理廠磷資源回收再利用之潛力及技術介紹。下水道.水再生期刊,1:2 2022.11[民111.11] , 27-41。
指導教授 莊順興 審核日期 2024-11-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明