博碩士論文 111323062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.15.0.151
姓名 林暄翰(Hsuan-Han Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 機械手臂輔助電解複合研磨系統應用於積層製造鈦合金葉片拋光
(Robotic Electrochemical Mechanical Polishing System for Additively Manufactured Titanium-Based Blade)
相關論文
★ 混氣放電線切割加工 N-Type 單晶碳化矽之研究★ 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究
★ 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究★ 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究
★ 6吋碳化矽晶圓碇之線放電加工參數優化與粒子追蹤模擬分析★ 以電解混氣法輔助微電化學高深徑比鑽孔加工之研究
★ 深切緩進電化學放電加工於石英玻璃之創成特性研究★ 高深徑比微細孔電化學加工 多重物理量耦合模擬之研究
★ 混氣電解電漿拋光法於不銹鋼管內表面品質改善之研究★ 靜電感應電化學加工法於哈氏合金內管壁拋光特性之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-1-20以後開放)
摘要(中) 針對當今積層製造零組件於國防、航太及醫療產業的大量應用,本研究提出一機械手臂輔助電解複合研磨拋光製程技術。此加工方法整合多軸機械手臂與電解研磨拋光技術,可有效且快速地降低積層製造鈦合金材料的表面粗糙度。研究內容包含系統機構規劃、夾治具設計、電極型式選用、拋光路徑規劃及電解複合研磨拋光參數的研究,並分析各加工參數因應複雜曲面形態下之積層製造鈦合金工件的拋光改善效果。根據拋光後的工件表面粗糙度數據及表面微觀結構觀察進行工序判斷,為建立高效的拋光系統提供參考依據。
本論文依據工件形貌特徵設計對應拋光電極毛刷、電解液供應模式及拋光路徑設計,經由機械手臂夾持電極毛刷,針對複雜曲面之葉片工件表面進行拋光修整,並透過實驗分析探討拋光路徑模式及各種加工參數如加工電流、電極移動速度、電極轉速、拋光次數對積層製造鈦合金葉片粗糙度、粗糙度均勻度、工件幾何輪廓,以及顯微結構的影響。實驗結果顯示在維持葉片幾何輪廓下,本研究開發之系統能夠有效降低工件表面粗糙度得到高精度且高品質之均勻表面,葉片工件平均表面粗糙度由Ra 25 μm降低至Ra 0.603 μm、表面粗糙度均勻度85.12 %。另外,透過TEM進行工件表層微觀結構觀測、XPS進行工件表面化學成份分析,發現經本研究開發之研磨系統進行電解複合研磨拋光後,工件表面在電化學作用下會形成一層結構更緻密的鈍化膜,增加葉片工件材料之耐腐蝕性。
摘要(英) In response to the extensive application of additive manufacturing components in defense, aerospace, and medical industries, this study proposes a robotic electrochemical mechanical polishing method. This method combines a multi-axis robotic arm with electrochemical mechanical polishing process, that could effectively and significantly reduce the surface roughness of additively manufactured titanium-based materials. The research includes system mechanism design, fixture design, electrode selection, polishing path planning, and the study of polishing parameters. Process evaluation is conducted based on surface roughness data and microstructure observations of the polished workpieces, providing a reference for establishing an efficient polishing system.
This study designs polishing electrode brushes, electrolyte supply modes, and polishing paths corresponding to the morphological characteristics of the blade workpiece. Surface polishing and refinement are performed on the complex curved surfaces of blade workpieces by controlling electrode brush with a robotic arm. Experimental analyses are discussed in detail to explore the influence of polishing path patterns and various processing parameters, such as machining current, electrode moving speed, electrode rotation speed, and polishing repetitions, on the machining characteristics of additively manufactured titanium alloy blades. Experimental results show that the developed system effectively reduces surface roughness while maintaining the geometric profile of blade workpieces. The average surface roughness of the blade workpieces decreased from Ra 25 μm to Ra 0.603 μm, with a surface roughness uniformity of 85.12%. Additionally, TEM observations of the microstructure on the workpiece surface and XPS analysis of the chemical composition of the workpiece surface revealed that, after electrochemical mechanical polishing with the developed system, a denser passivation film was formed on the workpiece surface due to the electrochemical action. This enhances the corrosion resistance of the blade material.
關鍵字(中) ★ 電解複合研磨拋光
★ 機械手臂
★ 積層製造
★ 鈦合金
★ 複雜曲面葉片工件
關鍵字(英) ★ Electrochemical mechanical polishing
★ Robotic arm
★ Additive manufacturing
★ Titanium alloy
★ Complex curved surface blade workpiece
論文目次 中文摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xii
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 2
1-3 文獻回顧 3
1-3-1 電解複合機械加工技術 6
1-3-2 自動化設備結合研磨技術 11
1-3-3 自動化設備結合電解加工技術 15
1-4 論文架構 20
第二章 實驗基礎與理論 21
2-1 電化學加工基礎理論 21
2-1-1 法拉第定律 22
2-1-2 歐姆定律 23
2-2 電解複合研磨拋光的基礎理論 24
2-3 電場強度對鈦合金表面之影響 26
第三章 實驗設備與方法 27
3-1 實驗方法 27
3-2 實驗相關設備 28
3-3 實驗材料 39
3-3-1 實驗工件 39
3-3-2 拋光電極刷頭 41
3-3-3 電解液選用 43
3-4 實驗流程 44
3-4-1 機械手臂輔助電解複合研磨拋光流程 47
3-4-2 機械手臂輔助電解複合研磨拋光路徑規劃方法 49
3-4-3 葉片工件粗糙度量測方式 51
3-4-4 工件表面粗糙度均勻度計算方式 52
第四章 結果與討論 53
4-1 機械手臂輔助電解複合研磨拋光之加工路徑規劃 53
4-1-1 加工路徑模式之修正 56
4-1-2 拋光路徑層間距對工件表面形貌之影響 59
4-2 不同參數下對表面粗糙度之影響 63
4-2-1 拋光加工次數之影響 65
4-2-2 加工電流之影響 68
4-2-3 拋光電極轉速之影響 71
4-2-4 拋光電極移動速度之影響 74
4-3 葉片拋光參數優化 77
4-3-1 優化參數葉片拋光實驗 77
4-3-2 拋光加工時間改善 82
4-3-3 效率提升拋光實驗 84
4-4 葉片工件顯微結構觀察及成份組成 88
4-4-1 工件表面微觀結構觀察 88
4-4-2 工件表面元素分析 91
4-5 電極刷毛之損耗壽命 99
第五章 結論 101
未來展望 103
參考文獻 104
參考文獻 [1] C. Shuai et al., “Highly effective smoothening of 3D-printed metal structures via overpotential electrochemical polishing,” Materials Research Letters, vol. 7, pp. 282–289, Apr. 2019, doi: 10.1080/21663831.2019.1601645.
[2] Y. Li et al., “Material Characterization, Thermal Analysis, and Mechanical Performance of a Laser-Polished Ti Alloy Prepared by Selective Laser Melting,” Metals, vol. 9, p. 112, Jan. 2019, doi: 10.3390/met9020112.
[3] S. M. Basha, M. Bhuyan, M. M. Basha, N. Venkaiah, and M. R. Sankar, “Laser polishing of 3D printed metallic components: A review on surface integrity,” Materials Today: Proceedings, vol. 26, pp. 2047–2054, Jan. 2020, doi: 10.1016/j.matpr.2020.02.443.
[4] C. P. Ma, Y. C. Guan, and W. Zhou, “Laser polishing of additive manufactured Ti alloys,” Optics and Lasers in Engineering, vol. 93, pp. 171–177, Jun. 2017, doi: 10.1016/j.optlaseng.2017.02.005.
[5] G. Pyka et al., “Surface Modification of Ti6Al4V Open Porous Structures Produced by Additive Manufacturing,” Advanced Engineering Materials, vol. 14, pp. 363–370, Jun. 2012, doi: 10.1002/adem.201100344.
[6] L. A. Hof, M. M. Rahman, and R. Wuthrich, “Multiscale post-processing of metal additive manufactured parts by electro-polishing technology.” Accessed: Sep. 16, 2024. [Online]. Available: https://espace2.etsmtl.ca/id/eprint/17386/
[7] L. Yang, Y. Wu, A. Lassell, and B. Zhou, “Electropolishing of Ti6Al4V Parts Fabricated by Electron Beam Melting,” 2016, Accessed: Sep. 16, 2024. [Online]. Available: https://hdl.handle.net/2152/89677
[8] H. Fayazfar, I. Rishmawi, and M. Vlasea, “Electrochemical-Based Surface Enhancement of Additively Manufactured Ti-6Al-4V Complex Structures,” J. of Materi Eng and Perform, vol. 30, no. 3, pp. 2245–2255, Mar. 2021, doi: 10.1007/s11665-021-05512-x.
[9] Y. Zhang, L. I. Jianzhong, and S. Che, “Electropolishing Mechanism of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting,” International Journal of Electrochemical Science, vol. 13, no. 5, pp. 4792–4807, May 2018, doi: 10.20964/2018.05.79.
[10] T. Lin and C. Su, “Experimental study of lapping and electropolishing of tungsten carbides,” Int J Adv Manuf Technol, vol. 36, no. 7, pp. 715–723, Mar. 2008, doi: 10.1007/s00170-006-0895-6.
[11] S. C. Tam, N. L. Loh, C. P. A. Mah, and N. H. Loh, “Electrochemical polishing of biomedical titanium orifice rings,” Journal of Materials Processing Technology, vol. 35, no. 1, pp. 83–91, Sep. 1992, doi: 10.1016/0924-0136(92)90303-A.
[12] M. M. Hatamleh, X. Wu, A. Alnazzawi, J. Watson, and D. Watts, “Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments,” Dental Materials, vol. 34, no. 4, pp. 676–683, Apr. 2018, doi: 10.1016/j.dental.2018.01.016.
[13] J. Tiley, K. Shiveley, G. B. Viswanathan, C. A. Crouse, and A. Shiveley, “Novel automatic electrochemical–mechanical polishing (ECMP) of metals for scanning electron microscopy,” Micron, vol. 41, no. 6, pp. 615–621, Aug. 2010, doi: 10.1016/j.micron.2010.03.008.
[14] S. J. Lee, Y. H. Chen, C. P. Liu, and T. J. Fan, “Electrochemical Mechanical Polishing of Flexible Stainless Steel Substrate for Thin-Film Solar Cells,” International Journal of Electrochemical Science, vol. 8, no. 5, pp. 6878–6888, May 2013, doi: 10.1016/S1452-3981(23)14813-9.
[15] K. Otake, Y. Ishii, and W. Natsu, “Experimental investigation on machining characteristics of difficult-to-machine materials with Electrochemical Mechanical Polishing,” International Journal of Electrical Machining, vol. 23, pp. 32–37, 2018, doi: 10.2526/ijem.23.32.
[16] A. Tsuji, P. Jia, M. Takizawa, and J. Murata, “Improvement in the polishing characteristics of titanium-based materials using electrochemical mechanical polishing,” Surfaces and Interfaces, vol. 35, p. 102490, Dec. 2022, doi: 10.1016/j.surfin.2022.102490.
[17] P. S. Pa, “Synchronous finishing processes using a combination of grinding and electrochemical smoothing on end-turning surfaces,” Int J Adv Manuf Technol, vol. 40, no. 3, pp. 277–285, Jan. 2009, doi: 10.1007/s00170-007-1329-9.
[18] P. S. Pa, “Design of freeform surface finish using burnishing assistance following electrochemical finishing,” J Mech Sci Technol, vol. 21, no. 10, pp. 1630–1636, Oct. 2007, doi: 10.1007/BF03177386.
[19] P. S. Pa, “Continuous finishing processes using a combination of burnishing and electrochemical finishing on bore surfaces,” Int J Adv Manuf Technol, vol. 49, no. 1, pp. 147–154, Jul. 2010, doi: 10.1007/s00170-009-2386-z.
[20] S. J. Ebeid and T. A. Ei Taweel, “Surface improvement through hybridization of electrochemical turning and roller burnishing based on the Taguchi technique,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 219, no. 5, pp. 423–430, May 2005, doi: 10.1243/095440505X32283.
[21] K. Z. Molla and A. Manna, “Optimization of Electrochemical Grinding Parameters for Effective Finishing of Hybrid Al/(Al2O3+ZrO2) MMC,” IJSEIMS, vol. 1, no. 2, pp. 35–45, Jul. 2013, doi: 10.4018/ijseims.2013070104.
[22] A. B. Puri and S. Banerjee, “Multiple-response optimisation of electrochemical grinding characteristics through response surface methodology,” Int J Adv Manuf Technol, vol. 64, no. 5, pp. 715–725, Feb. 2013, doi: 10.1007/s00170-012-4065-8.
[23] P. M. Ming, D. Zhu, and Z. Y. Xu, “Electrochemical Grinding for Unclosed Internal Cylinder Surface,” Key Engineering Materials, vol. 359–360, pp. 360–364, 2008, doi: 10.4028/www.scientific.net/KEM.359-360.360.
[24] C. Zhao, N. Qu, and X. Tang, “Electrochemical mechanical polishing of internal holes created by selective laser melting,” Journal of Manufacturing Processes, vol. 64, pp. 1544–1562, Apr. 2021, doi: 10.1016/j.jmapro.2021.03.003.
[25] C. Zhao, N. Qu, and X. Tang, “Removal of adhesive powders from additive-manufactured internal surface via electrochemical machining with flexible cathode,” Precision Engineering, vol. 67, pp. 438–452, Jan. 2021, doi: 10.1016/j.precisioneng.2020.11.003.
[26] L. An, D. Wang, and D. Zhu, “Combined electrochemical and mechanical polishing of interior channels in parts made by additive manufacturing,” Additive Manufacturing, vol. 51, p. 102638, Mar. 2022, doi: 10.1016/j.addma.2022.102638.
[27] J. I. Zhao et al., “A new method of automatic polishing on curved aluminium alloy surfaces at constant pressure,” International Journal of Machine Tools and Manufacture, vol. 35, no. 12, pp. 1683–1692, Dec. 1995, doi: 10.1016/0890-6955(95)97297-D.
[28] C. H. Liu, C. A. Chen, and J. S. Huang, “The polishing of molds and dies using a compliance tool holder mechanism,” Journal of Materials Processing Technology, vol. 166, no. 2, pp. 230–236, Aug. 2005, doi: 10.1016/j.jmatprotec.2004.08.021.
[29] M. C. Lee et al., “A robust trajectory tracking control of a polishing robot system based on CAM data,” Robotics and Computer-Integrated Manufacturing, vol. 17, no. 1, pp. 177–183, Feb. 2001, doi: 10.1016/S0736-5845(00)00052-1.
[30] X. Pessoles and C. Tournier, “Automatic polishing process of plastic injection molds on a 5-axis milling center,” Journal of Materials Processing Technology, vol. 209, no. 7, pp. 3665–3673, Apr. 2009, doi: 10.1016/j.jmatprotec.2008.08.034.
[31] G. Wang, Y. Wang, J. Zhao, and G. Chen, “Process optimization of the serial-parallel hybrid polishing machine tool based on artificial neural network and genetic algorithm,” J Intell Manuf, vol. 23, no. 3, pp. 365–374, Jun. 2012, doi: 10.1007/s10845-009-0376-5.
[32] J. H. Duan, Y. Y. Shi, X. J. Lin, and T. Dong, “Flexible Polishing Machine with Dual Grinding Heads for Aeroengine Blade and Blisk,” Advanced Materials Research, vol. 317–319, pp. 2454–2460, 2011, doi: 10.4028/www.scientific.net/AMR.317-319.2454.
[33] A. T. Beaucamp, Y. Namba, P. Charlton, S. Jain, and A. A. Graziano, “Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG),” Surf. Topogr.: Metrol. Prop., vol. 3, no. 2, p. 024001, Apr. 2015, doi: 10.1088/2051-672X/3/2/024001.
[34] M. J. Tsai, J. F. Huang, and W. L. Kao, “Robotic polishing of precision molds with uniform material removal control,” International Journal of Machine Tools and Manufacture, vol. 49, no. 11, pp. 885–895, Sep. 2009, doi: 10.1016/j.ijmachtools.2009.05.002.
[35] J. J. Marquez, J. M. Perez, J. R??os, and A. Vizan, “Process modeling for robotic polishing,” Journal of Materials Processing Technology, vol. 159, no. 1, pp. 69–82, Jan. 2005, doi: 10.1016/j.jmatprotec.2004.01.045.
[36] Y. S. Cheng, S. H. Yen, A. K. Bedaka, S. H. Shah, and C.-Y. Lin, “Trajectory planning method with grinding compensation strategy for robotic propeller blade sharpening application,” Journal of Manufacturing Processes, vol. 86, pp. 294–310, Jan. 2023, doi: 10.1016/j.jmapro.2023.01.004.
[37] H. Zhang, L. Li, J. Zhao, J. Zhao, and Y. Gong, “Theoretical investigation and implementation of nonlinear material removal depth strategy for robot automatic grinding aviation blade,” Journal of Manufacturing Processes, vol. 74, pp. 441–455, Feb. 2022, doi: 10.1016/j.jmapro.2021.12.028.
[38] H. Li, L. Zou, C. Lv, Z. Wang, W. Wang, and Y. Huang, “An optimization framework for enhancing profile accuracy in robotic grinding of compressor blade edge,” Chinese Journal of Aeronautics, Sep. 2024, doi: 10.1016/j.cja.2024.09.004.
[39] X. Li, H. Zhao, H. Zhou, Y. Cai, Y. Yin, and H. Ding, “Robotic grinding and polishing of complex aeroengine blades based on new device design and variable impedance control,” Robotics and Computer-Integrated Manufacturing, vol. 92, p. 102875, Apr. 2025, doi: 10.1016/j.rcim.2024.102875.
[40] X. Xu, D. Zhu, J. Wang, S. Yan, and H. Ding, “Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere,” Robotics and Computer-Integrated Manufacturing, vol. 51, pp. 189–201, Jun. 2018, doi: 10.1016/j.rcim.2017.12.006.
[41] G. Zhu et al., “Study on vibration stability of aircraft engine blades polished by robot controlled pneumatic grinding wheel,” Journal of Manufacturing Processes, vol. 99, pp. 636–651, Aug. 2023, doi: 10.1016/j.jmapro.2023.05.090.
[42] B. Xu, W. Gan, YafengHe, X. Wang, F. Yin, and X. Wang, “Five-axis Numerical Control of Electrochemical Mechanical Polishing of an Integral Impeller,” International Journal of Electrochemical Science, vol. 15, no. 12, pp. 12504–12523, Dec. 2020, doi: 10.20964/2020.12.80.
[43] A. Cebi, H. Demirtas, M. T. Aslan, O. Yilmaz, B. Kanber, and A. R. Kaleli, “A novel machine tool concept: Robotic electrochemical machining,” Procedia Manufacturing, vol. 54, pp. 203–208, Jan. 2021, doi: 10.1016/j.promfg.2021.07.031.
[44] A. Cebi, H. Demirtas, and A. Kaleli, “Implementation of robotic electrochemical machining in freeform surface machining with material removal rate prediction using different machine learning algorithms,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 238, no. 9, pp. 3835–3849, 2024, doi: 10.1177/09544062231208302.
[45] L. Jiang, M. Fang, Y. Chen, F. Xia, and W. You, “Influence of industrial robot trajectory on electrochemical machining quality,” International Journal of Electrochemical Science, vol. 17, no. 7, p. 220746, Jul. 2022, doi: 10.20964/2022.07.49.
[46] Y. Chen, L. Jiang, X. Wen, S. Wanyan, and J. Zhou, “Dynamic Performance Design and Optimization of Electrochemical Machining Robot,” Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, vol. 55, no. 3, pp. 410–417, 2023, doi: 10.16356/j.1005-2615.2023.03.005.
[47] A. E. K. Mohammad and D. Wang, “Electrochemical mechanical polishing technology: recent developments and future research and industrial needs,” Int J Adv Manuf Technol, vol. 86, no. 5, pp. 1909–1924, Sep. 2016, doi: 10.1007/s00170-015-8119-6.
[48] A. Mohammad and D. Wang, “A Novel Mechatronics Design of an Electrochemical Mechanical End-Effector for Robotic-Based Surface Polishing,” Dec. 2015. doi: 10.1109/SII.2015.7404966.
[49] A. E. K. Mohammad, J. Hong, D. Wang, and Y. Guan, “Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications,” Robotics and Computer-Integrated Manufacturing, vol. 55, pp. 65–75, Feb. 2019, doi: 10.1016/j.rcim.2018.07.005.
[50] K. F. Kurniawan, I. M. Ulfah, and M. Kozin, “The Effect of Anodic Oxidation Voltages on the Color and Corrosion Resistance of Commercially Pure Titanium (CP-Ti): -,” Journal of Evrimata: Engineering and Physics, pp. 18–23, Jun. 2023, doi: 10.70822/journalofevrmata.vi.9.
[51] “JCGM 100:2008 GUM with minor corrections, ‘Evaluation of measurement data – Guide to the expression of uncertainty in measurement,’ First edition 2008, Corrected version , 2010.” Accessed: Oct. 07, 2024. [Online]. Available: https://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html
[52] J. Jablonski, D. Scharpf, S. Rabade, L. Dobrowski, C. Durell, and J. Holt, “Perfectly understood non-uniformity: methods of measurement and uncertainty of uniform sources,” in Proceedings Volume 10980, Baltimore, MD, United States, May 2019. doi: 10.1117/12.2519038.
[53] J.-C. Hung et al., “Surface passivation and brightening of titanium-based AM materials using a robotic electrochemical mechanical polishing system,” Int J Adv Manuf Technol, vol. 134, no. 9, pp. 4339–4352, Oct. 2024, doi: 10.1007/s00170-024-14400-2.
[54] C. Cai et al., “Effect of hot isostatic pressing procedure on performance of Ti6Al4V: Surface qualities, microstructure and mechanical properties,” Journal of Alloys and Compounds, vol. 686, pp. 55–63, Nov. 2016, doi: 10.1016/j.jallcom.2016.05.280.
[55] X. Zhou et al., “Microstructural evolution and corrosion behavior of Ti–6Al–4V alloy fabricated by laser metal deposition for dental applications,” Journal of Materials Research and Technology, vol. 14, pp. 1459–1472, Sep. 2021, doi: 10.1016/j.jmrt.2021.07.006.
[56] M. Hierro Oliva, A. M. Gallardo Moreno, and M. L. Gonzalez Martin, “XPS Analysis of Ti6Al4V Oxidation Under UHV Conditions,” Metall Mater Trans A, vol. 45, no. 13, pp. 6285–6290, Dec. 2014, doi: 10.1007/s11661-014-2570-0.
[57] A. Wiatrowski et al., “Comparison of the Physicochemical Properties of TiO2 Thin Films Obtained by Magnetron Sputtering with Continuous and Pulsed Gas Flow,” Coatings, vol. 8, no. 11, Art. no. 11, Nov. 2018, doi: 10.3390/coatings8110412.
[58] N. Delegan, R. Daghrir, P. Drogui, and M. A. El Khakani, “Bandgap tailoring of in-situ nitrogen-doped TiO2 sputtered films intended for electrophotocatalytic applications under solar light,” Journal of Applied Physics, vol. 116, no. 15, p. 153510, Oct. 2014, doi: 10.1063/1.4898589.
指導教授 洪榮洲(Jung-Chou Hung) 審核日期 2025-1-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明