參考文獻 |
[1] C. Shuai et al., “Highly effective smoothening of 3D-printed metal structures via overpotential electrochemical polishing,” Materials Research Letters, vol. 7, pp. 282–289, Apr. 2019, doi: 10.1080/21663831.2019.1601645.
[2] Y. Li et al., “Material Characterization, Thermal Analysis, and Mechanical Performance of a Laser-Polished Ti Alloy Prepared by Selective Laser Melting,” Metals, vol. 9, p. 112, Jan. 2019, doi: 10.3390/met9020112.
[3] S. M. Basha, M. Bhuyan, M. M. Basha, N. Venkaiah, and M. R. Sankar, “Laser polishing of 3D printed metallic components: A review on surface integrity,” Materials Today: Proceedings, vol. 26, pp. 2047–2054, Jan. 2020, doi: 10.1016/j.matpr.2020.02.443.
[4] C. P. Ma, Y. C. Guan, and W. Zhou, “Laser polishing of additive manufactured Ti alloys,” Optics and Lasers in Engineering, vol. 93, pp. 171–177, Jun. 2017, doi: 10.1016/j.optlaseng.2017.02.005.
[5] G. Pyka et al., “Surface Modification of Ti6Al4V Open Porous Structures Produced by Additive Manufacturing,” Advanced Engineering Materials, vol. 14, pp. 363–370, Jun. 2012, doi: 10.1002/adem.201100344.
[6] L. A. Hof, M. M. Rahman, and R. Wuthrich, “Multiscale post-processing of metal additive manufactured parts by electro-polishing technology.” Accessed: Sep. 16, 2024. [Online]. Available: https://espace2.etsmtl.ca/id/eprint/17386/
[7] L. Yang, Y. Wu, A. Lassell, and B. Zhou, “Electropolishing of Ti6Al4V Parts Fabricated by Electron Beam Melting,” 2016, Accessed: Sep. 16, 2024. [Online]. Available: https://hdl.handle.net/2152/89677
[8] H. Fayazfar, I. Rishmawi, and M. Vlasea, “Electrochemical-Based Surface Enhancement of Additively Manufactured Ti-6Al-4V Complex Structures,” J. of Materi Eng and Perform, vol. 30, no. 3, pp. 2245–2255, Mar. 2021, doi: 10.1007/s11665-021-05512-x.
[9] Y. Zhang, L. I. Jianzhong, and S. Che, “Electropolishing Mechanism of Ti-6Al-4V Alloy Fabricated by Selective Laser Melting,” International Journal of Electrochemical Science, vol. 13, no. 5, pp. 4792–4807, May 2018, doi: 10.20964/2018.05.79.
[10] T. Lin and C. Su, “Experimental study of lapping and electropolishing of tungsten carbides,” Int J Adv Manuf Technol, vol. 36, no. 7, pp. 715–723, Mar. 2008, doi: 10.1007/s00170-006-0895-6.
[11] S. C. Tam, N. L. Loh, C. P. A. Mah, and N. H. Loh, “Electrochemical polishing of biomedical titanium orifice rings,” Journal of Materials Processing Technology, vol. 35, no. 1, pp. 83–91, Sep. 1992, doi: 10.1016/0924-0136(92)90303-A.
[12] M. M. Hatamleh, X. Wu, A. Alnazzawi, J. Watson, and D. Watts, “Surface characteristics and biocompatibility of cranioplasty titanium implants following different surface treatments,” Dental Materials, vol. 34, no. 4, pp. 676–683, Apr. 2018, doi: 10.1016/j.dental.2018.01.016.
[13] J. Tiley, K. Shiveley, G. B. Viswanathan, C. A. Crouse, and A. Shiveley, “Novel automatic electrochemical–mechanical polishing (ECMP) of metals for scanning electron microscopy,” Micron, vol. 41, no. 6, pp. 615–621, Aug. 2010, doi: 10.1016/j.micron.2010.03.008.
[14] S. J. Lee, Y. H. Chen, C. P. Liu, and T. J. Fan, “Electrochemical Mechanical Polishing of Flexible Stainless Steel Substrate for Thin-Film Solar Cells,” International Journal of Electrochemical Science, vol. 8, no. 5, pp. 6878–6888, May 2013, doi: 10.1016/S1452-3981(23)14813-9.
[15] K. Otake, Y. Ishii, and W. Natsu, “Experimental investigation on machining characteristics of difficult-to-machine materials with Electrochemical Mechanical Polishing,” International Journal of Electrical Machining, vol. 23, pp. 32–37, 2018, doi: 10.2526/ijem.23.32.
[16] A. Tsuji, P. Jia, M. Takizawa, and J. Murata, “Improvement in the polishing characteristics of titanium-based materials using electrochemical mechanical polishing,” Surfaces and Interfaces, vol. 35, p. 102490, Dec. 2022, doi: 10.1016/j.surfin.2022.102490.
[17] P. S. Pa, “Synchronous finishing processes using a combination of grinding and electrochemical smoothing on end-turning surfaces,” Int J Adv Manuf Technol, vol. 40, no. 3, pp. 277–285, Jan. 2009, doi: 10.1007/s00170-007-1329-9.
[18] P. S. Pa, “Design of freeform surface finish using burnishing assistance following electrochemical finishing,” J Mech Sci Technol, vol. 21, no. 10, pp. 1630–1636, Oct. 2007, doi: 10.1007/BF03177386.
[19] P. S. Pa, “Continuous finishing processes using a combination of burnishing and electrochemical finishing on bore surfaces,” Int J Adv Manuf Technol, vol. 49, no. 1, pp. 147–154, Jul. 2010, doi: 10.1007/s00170-009-2386-z.
[20] S. J. Ebeid and T. A. Ei Taweel, “Surface improvement through hybridization of electrochemical turning and roller burnishing based on the Taguchi technique,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, vol. 219, no. 5, pp. 423–430, May 2005, doi: 10.1243/095440505X32283.
[21] K. Z. Molla and A. Manna, “Optimization of Electrochemical Grinding Parameters for Effective Finishing of Hybrid Al/(Al2O3+ZrO2) MMC,” IJSEIMS, vol. 1, no. 2, pp. 35–45, Jul. 2013, doi: 10.4018/ijseims.2013070104.
[22] A. B. Puri and S. Banerjee, “Multiple-response optimisation of electrochemical grinding characteristics through response surface methodology,” Int J Adv Manuf Technol, vol. 64, no. 5, pp. 715–725, Feb. 2013, doi: 10.1007/s00170-012-4065-8.
[23] P. M. Ming, D. Zhu, and Z. Y. Xu, “Electrochemical Grinding for Unclosed Internal Cylinder Surface,” Key Engineering Materials, vol. 359–360, pp. 360–364, 2008, doi: 10.4028/www.scientific.net/KEM.359-360.360.
[24] C. Zhao, N. Qu, and X. Tang, “Electrochemical mechanical polishing of internal holes created by selective laser melting,” Journal of Manufacturing Processes, vol. 64, pp. 1544–1562, Apr. 2021, doi: 10.1016/j.jmapro.2021.03.003.
[25] C. Zhao, N. Qu, and X. Tang, “Removal of adhesive powders from additive-manufactured internal surface via electrochemical machining with flexible cathode,” Precision Engineering, vol. 67, pp. 438–452, Jan. 2021, doi: 10.1016/j.precisioneng.2020.11.003.
[26] L. An, D. Wang, and D. Zhu, “Combined electrochemical and mechanical polishing of interior channels in parts made by additive manufacturing,” Additive Manufacturing, vol. 51, p. 102638, Mar. 2022, doi: 10.1016/j.addma.2022.102638.
[27] J. I. Zhao et al., “A new method of automatic polishing on curved aluminium alloy surfaces at constant pressure,” International Journal of Machine Tools and Manufacture, vol. 35, no. 12, pp. 1683–1692, Dec. 1995, doi: 10.1016/0890-6955(95)97297-D.
[28] C. H. Liu, C. A. Chen, and J. S. Huang, “The polishing of molds and dies using a compliance tool holder mechanism,” Journal of Materials Processing Technology, vol. 166, no. 2, pp. 230–236, Aug. 2005, doi: 10.1016/j.jmatprotec.2004.08.021.
[29] M. C. Lee et al., “A robust trajectory tracking control of a polishing robot system based on CAM data,” Robotics and Computer-Integrated Manufacturing, vol. 17, no. 1, pp. 177–183, Feb. 2001, doi: 10.1016/S0736-5845(00)00052-1.
[30] X. Pessoles and C. Tournier, “Automatic polishing process of plastic injection molds on a 5-axis milling center,” Journal of Materials Processing Technology, vol. 209, no. 7, pp. 3665–3673, Apr. 2009, doi: 10.1016/j.jmatprotec.2008.08.034.
[31] G. Wang, Y. Wang, J. Zhao, and G. Chen, “Process optimization of the serial-parallel hybrid polishing machine tool based on artificial neural network and genetic algorithm,” J Intell Manuf, vol. 23, no. 3, pp. 365–374, Jun. 2012, doi: 10.1007/s10845-009-0376-5.
[32] J. H. Duan, Y. Y. Shi, X. J. Lin, and T. Dong, “Flexible Polishing Machine with Dual Grinding Heads for Aeroengine Blade and Blisk,” Advanced Materials Research, vol. 317–319, pp. 2454–2460, 2011, doi: 10.4028/www.scientific.net/AMR.317-319.2454.
[33] A. T. Beaucamp, Y. Namba, P. Charlton, S. Jain, and A. A. Graziano, “Finishing of additively manufactured titanium alloy by shape adaptive grinding (SAG),” Surf. Topogr.: Metrol. Prop., vol. 3, no. 2, p. 024001, Apr. 2015, doi: 10.1088/2051-672X/3/2/024001.
[34] M. J. Tsai, J. F. Huang, and W. L. Kao, “Robotic polishing of precision molds with uniform material removal control,” International Journal of Machine Tools and Manufacture, vol. 49, no. 11, pp. 885–895, Sep. 2009, doi: 10.1016/j.ijmachtools.2009.05.002.
[35] J. J. Marquez, J. M. Perez, J. R??os, and A. Vizan, “Process modeling for robotic polishing,” Journal of Materials Processing Technology, vol. 159, no. 1, pp. 69–82, Jan. 2005, doi: 10.1016/j.jmatprotec.2004.01.045.
[36] Y. S. Cheng, S. H. Yen, A. K. Bedaka, S. H. Shah, and C.-Y. Lin, “Trajectory planning method with grinding compensation strategy for robotic propeller blade sharpening application,” Journal of Manufacturing Processes, vol. 86, pp. 294–310, Jan. 2023, doi: 10.1016/j.jmapro.2023.01.004.
[37] H. Zhang, L. Li, J. Zhao, J. Zhao, and Y. Gong, “Theoretical investigation and implementation of nonlinear material removal depth strategy for robot automatic grinding aviation blade,” Journal of Manufacturing Processes, vol. 74, pp. 441–455, Feb. 2022, doi: 10.1016/j.jmapro.2021.12.028.
[38] H. Li, L. Zou, C. Lv, Z. Wang, W. Wang, and Y. Huang, “An optimization framework for enhancing profile accuracy in robotic grinding of compressor blade edge,” Chinese Journal of Aeronautics, Sep. 2024, doi: 10.1016/j.cja.2024.09.004.
[39] X. Li, H. Zhao, H. Zhou, Y. Cai, Y. Yin, and H. Ding, “Robotic grinding and polishing of complex aeroengine blades based on new device design and variable impedance control,” Robotics and Computer-Integrated Manufacturing, vol. 92, p. 102875, Apr. 2025, doi: 10.1016/j.rcim.2024.102875.
[40] X. Xu, D. Zhu, J. Wang, S. Yan, and H. Ding, “Calibration and accuracy analysis of robotic belt grinding system using the ruby probe and criteria sphere,” Robotics and Computer-Integrated Manufacturing, vol. 51, pp. 189–201, Jun. 2018, doi: 10.1016/j.rcim.2017.12.006.
[41] G. Zhu et al., “Study on vibration stability of aircraft engine blades polished by robot controlled pneumatic grinding wheel,” Journal of Manufacturing Processes, vol. 99, pp. 636–651, Aug. 2023, doi: 10.1016/j.jmapro.2023.05.090.
[42] B. Xu, W. Gan, YafengHe, X. Wang, F. Yin, and X. Wang, “Five-axis Numerical Control of Electrochemical Mechanical Polishing of an Integral Impeller,” International Journal of Electrochemical Science, vol. 15, no. 12, pp. 12504–12523, Dec. 2020, doi: 10.20964/2020.12.80.
[43] A. Cebi, H. Demirtas, M. T. Aslan, O. Yilmaz, B. Kanber, and A. R. Kaleli, “A novel machine tool concept: Robotic electrochemical machining,” Procedia Manufacturing, vol. 54, pp. 203–208, Jan. 2021, doi: 10.1016/j.promfg.2021.07.031.
[44] A. Cebi, H. Demirtas, and A. Kaleli, “Implementation of robotic electrochemical machining in freeform surface machining with material removal rate prediction using different machine learning algorithms,” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 238, no. 9, pp. 3835–3849, 2024, doi: 10.1177/09544062231208302.
[45] L. Jiang, M. Fang, Y. Chen, F. Xia, and W. You, “Influence of industrial robot trajectory on electrochemical machining quality,” International Journal of Electrochemical Science, vol. 17, no. 7, p. 220746, Jul. 2022, doi: 10.20964/2022.07.49.
[46] Y. Chen, L. Jiang, X. Wen, S. Wanyan, and J. Zhou, “Dynamic Performance Design and Optimization of Electrochemical Machining Robot,” Nanjing Hangkong Hangtian Daxue Xuebao/Journal of Nanjing University of Aeronautics and Astronautics, vol. 55, no. 3, pp. 410–417, 2023, doi: 10.16356/j.1005-2615.2023.03.005.
[47] A. E. K. Mohammad and D. Wang, “Electrochemical mechanical polishing technology: recent developments and future research and industrial needs,” Int J Adv Manuf Technol, vol. 86, no. 5, pp. 1909–1924, Sep. 2016, doi: 10.1007/s00170-015-8119-6.
[48] A. Mohammad and D. Wang, “A Novel Mechatronics Design of an Electrochemical Mechanical End-Effector for Robotic-Based Surface Polishing,” Dec. 2015. doi: 10.1109/SII.2015.7404966.
[49] A. E. K. Mohammad, J. Hong, D. Wang, and Y. Guan, “Synergistic integrated design of an electrochemical mechanical polishing end-effector for robotic polishing applications,” Robotics and Computer-Integrated Manufacturing, vol. 55, pp. 65–75, Feb. 2019, doi: 10.1016/j.rcim.2018.07.005.
[50] K. F. Kurniawan, I. M. Ulfah, and M. Kozin, “The Effect of Anodic Oxidation Voltages on the Color and Corrosion Resistance of Commercially Pure Titanium (CP-Ti): -,” Journal of Evrimata: Engineering and Physics, pp. 18–23, Jun. 2023, doi: 10.70822/journalofevrmata.vi.9.
[51] “JCGM 100:2008 GUM with minor corrections, ‘Evaluation of measurement data – Guide to the expression of uncertainty in measurement,’ First edition 2008, Corrected version , 2010.” Accessed: Oct. 07, 2024. [Online]. Available: https://www.iso.org/sites/JCGM/GUM/JCGM100/C045315e-html/C045315e.html
[52] J. Jablonski, D. Scharpf, S. Rabade, L. Dobrowski, C. Durell, and J. Holt, “Perfectly understood non-uniformity: methods of measurement and uncertainty of uniform sources,” in Proceedings Volume 10980, Baltimore, MD, United States, May 2019. doi: 10.1117/12.2519038.
[53] J.-C. Hung et al., “Surface passivation and brightening of titanium-based AM materials using a robotic electrochemical mechanical polishing system,” Int J Adv Manuf Technol, vol. 134, no. 9, pp. 4339–4352, Oct. 2024, doi: 10.1007/s00170-024-14400-2.
[54] C. Cai et al., “Effect of hot isostatic pressing procedure on performance of Ti6Al4V: Surface qualities, microstructure and mechanical properties,” Journal of Alloys and Compounds, vol. 686, pp. 55–63, Nov. 2016, doi: 10.1016/j.jallcom.2016.05.280.
[55] X. Zhou et al., “Microstructural evolution and corrosion behavior of Ti–6Al–4V alloy fabricated by laser metal deposition for dental applications,” Journal of Materials Research and Technology, vol. 14, pp. 1459–1472, Sep. 2021, doi: 10.1016/j.jmrt.2021.07.006.
[56] M. Hierro Oliva, A. M. Gallardo Moreno, and M. L. Gonzalez Martin, “XPS Analysis of Ti6Al4V Oxidation Under UHV Conditions,” Metall Mater Trans A, vol. 45, no. 13, pp. 6285–6290, Dec. 2014, doi: 10.1007/s11661-014-2570-0.
[57] A. Wiatrowski et al., “Comparison of the Physicochemical Properties of TiO2 Thin Films Obtained by Magnetron Sputtering with Continuous and Pulsed Gas Flow,” Coatings, vol. 8, no. 11, Art. no. 11, Nov. 2018, doi: 10.3390/coatings8110412.
[58] N. Delegan, R. Daghrir, P. Drogui, and M. A. El Khakani, “Bandgap tailoring of in-situ nitrogen-doped TiO2 sputtered films intended for electrophotocatalytic applications under solar light,” Journal of Applied Physics, vol. 116, no. 15, p. 153510, Oct. 2014, doi: 10.1063/1.4898589. |