參考文獻 |
Acharja, P., Kaushar A., Trivedi, D.K., Safai, P., Ghude, S., Prabhakaran, T., Rajeevan, M., 2020. Characterization of atmospheric traces gases and water soluble inorganic chemical ions of PM1 and PM2.5 at Indira Gandhi International Airport, New Delhi during 2017–18 winter. Science of The Total Environment, 729, 138800.
Andreae, M. O., & Rosenfeld, D., 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89, 13-41.
Andreae, M. O., & Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955-966.
Chen, B. Y., Chan, C. C., Lee, C. T., Cheng, T. J., Huang, W. C., Jhou, J. C., Guo, Y. L., 2012. The association of ambient air pollution with airway inflammation in schoolchildren. American Journal of Epidemiology, 175, 764-774.
Chen, W. N., Chen, Y. C., Kuo, C. Y., Chou, C. H., Cheng, C. H., Huang, C. C., Liu, S. C., 2014. The real-time method of assessing the contribution of individual sources on visibility degradation in Taichung. Science of The Total Environment, 497, 219-228.
Chen, Y. C., Chou, C. C. K., Tsai, Y. J., Chang, S. Y., Chen, W. N., 2019. The hourly characteristics of aerosol chemical compositions under fog and high particle pollution events in Kinmen. Atmospheric Research, 223, 132-141.
Chen, W. R., Singh, A., Pani, S. K., Chang, S. Y., Chou, C. C. K., Chang, S. C., Lee, C. T., 2021a. Real-time measurements of PM2.5 water-soluble inorganic ions at a high-altitude mountain site in the western North Pacific: Impact of upslope wind and long-range transported biomass-burning smoke. Atmospheric Research, 260, 105686.
Chen, C.-L., Chen, T.-Y., Hung, H.-M., Tsai, P.-W., Chou, C. C. K., Chen, W.-N., 2021b. The influence of upslope fog on hygroscopicity and chemical composition of aerosols at a forest site in Taiwan. Atmospheric Environment, 246, 118150.
Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Su, H., 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances, 2, 1601530.
Chuang, M. T., Chou, C. C. K., Sopajaree, K., Lin, N. H., Wang, J. L., Sheu, G. R., Chang, Y. J. Lee, C. T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment, 78, 72-81.
Chuang, M.-T., Lee, C.-T., Chou, C. C.-K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Young, C.-Y., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment, 89, 507-516.
Chuang, M. T., Chou, C. C. K., Lin, C. Y., Lin, W. C., Lee, J. H., Li, M. H., Chen, Y. C., 2024. Source apportionment of PM2.5 episodes in the Taichung metropolitan area, Taiwan. Atmospheric Research, 311, 107666.
Clark, W. E., & Whitby, K. T., 1975. Measurements of aerosols produced by the photochemical oxidation of SO2 in air. Journal of Colloid and Interface Science, 51, 477-490.
Drewnick, F., Schwab, J. J., Hogrefe, O., Peters, S., Husain, L., Diamond, D., Webber, R., Demerjian, K. L., 2003. Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments. Atmospheric Environment, 37, 3335-3350.
Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Streets, D. G., 2008. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmospheric Environment, 42, 2023-2036.
Gao, X., Xue, L., Wang, X., Wang, T., Yuan, C., Gao, R., Wang, W., 2012. Aerosol ionic components at Mt. Heng in central southern China: abundances, size distribution, and impacts of long-range transport. Science of The Total Environment, 433, 498-506.
Grantz, D., Garner, J., Johnson, D., 2003. Ecological effects of particulate matter. Environment International, 29, 213-239.
Jung, C. H., & Kim, Y. P., 2006. Numerical estimation of the effects of condensation and coagulation on visibility using the moment method. Journal of Aerosol Science, 37, 143-161.
Kim, H., & Zhang, Q. J. C. (2019). Chemistry of new particle growth during springtime in the Seoul metropolitan area, Korea. Chemosphere, 225, 713-722.
Kotnala, G., Mandal, T. K., Sharma, S. K. Kotnala, R. K., 2020. Emergence of Blue Sky Over Delhi Due to Coronavirus Disease (COVID-19) Lockdown Implications. Aerosol Science and Engineering, 4 , 228-238.
Kulmala, M., Petaja, T., Nieminen, T., Sipila, M., Manninen, H. E., Lehtipalo, K., Kerminen, V. M., 2012. Measurement of the nucleation of atmospheric aerosol particles. Nature Protocols, 7, 1651-1667.
Li, Z., Liu, Y., Lin, Y., Gautam, S., Kuo, H. C., Tsai, C. J., Wu, G. J., 2017a. Development of an automated system (PPWD/PILS) for studying PM2.5 water-soluble ions and precursor gases: Field measurements in two cities, Taiwan. Aerosol and Air Quality Research, 17, 426-443.
Li, H., Ma, Y., Duan, F., He, K., Zhu, L., Huang, T., Zhang, Z., 2017b. Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution. Environmental Pollution, 229, 339-349.
Lin, C. Y., & Chen, C. S., 2002. A study of orographic effects on mountain-generated precipitation systems under weak synoptic forcing. Meteorology and Atmospheric Physics, 81, 1-25.
Lin, C. Y., Sheng, Y. F., Chen, W. C., Chou, C. C., Chien, Y. Y., Chen, W. M., 2021. Air quality deterioration episode associated with a typhoon over the complex topographic environment in central Taiwan. Atmospheric Chemistry and Physics, 21, 16893-16910.
Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., Wang, Y., 2017. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere, 183, 119-131.
Liu, Y., Fan, Q., Chen, X., Zhao, J., Ling, Z., Hong, Y., Wei, X., 2018. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China. Atmospheric Chemistry and Physics, 18, 2709-2724.
Liu, Pengfei, Ye, C., Xue, C., Zhang, C., Mu, Y., Sun, X., 2020. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry. Atmospheric Chemistry and Physics, 20, 4153-4165.
Ma, W., Wenga, T., Frandsen, F. J., Yan, B., & Chen, G., 2020. The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies. Progress in Energy and Combustion Science, 76, 100789.
Mazoyer, M., Burnet, F., Denjean, C., Roberts, G. C., Haeffelin, M., Dupont, J.-C., Elias, T., 2019. Experimental study of the aerosol impact on fog microphysics. Atmospheric Chemistry and Physics, 19, 4323-4344.
Mwaniki, G. R., Rosenkrance, C., Wallace, H. W., Jobson, B. T., Erickson, M. H., Lamb, B. K., VanReken, T. M., 2014. Factors contributing to elevated concentrations of PM2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research, 5, 96-103.
Pani, S. K., Chantara, S., Khamkaew, C., Lee, C.-T., Lin, N.-H., 2019. Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure. Atmospheric Research, 224, 180-195.
Pathak, R. K., Louie, P. K., & Chan, C. K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment, 38, 2965-2974.
Pio, C. A., & Lopes, D. A., 1998. Chlorine loss from marine aerosol in a coastal atmosphere. Journal of Geophysical Research: Atmospheres, 103, 25263-25272.
Salam, A., Assaduzzaman, M., Hossain, M. N., & Siddiki, A. K. M., 2015. Water soluble ionic species in the atmospheric fine particulate matters (PM2.5) in a Southeast Asian mega city (Dhaka, Bangladesh). Open Journal of Air Pollution, 4, 99.
Shaw, G. E., 2007. Aerosols at a mountaintop observatory in Arizona. Journal of Geophysical Research: Atmospheres, 10, 11605–11621.
Shon, Z.-H., Kim, K.-H., Song, S.-K., Jung, K., Kim, N.-J., Lee, J.-B., 2012. Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmospheric environment, 59, 540-550.
Singh, A., Satish, R. V., & Rastogi, N. J. A. E., 2019. Characteristics and sources of fine organic aerosol over a big semi-arid urban city of western India using HR-ToF-AMS. Atmospheric Environment, 208, 103-112.
Song, C. H., Park, M. E., Lee, E. J., Lee, J. H., Lee, B. K., Lee, D. S., Kim, J., Han, J. S., Moon, K. J., Kondo, Y., 2009. Possible particulate nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea. Atmospheric Environment, 43, 2168-2173.
Sun, P., Nie, W., Chi, X., Xie, Y., Huang, X., Xu, Z., Ding, A., 2018. Two years of online measurement of fine particulate nitrate in the western Yangtze River Delta: influences of thermodynamics and N2O5 hydrolysis. Atmospheric Chemistry and Physics, 18, 17177-17190.
Tang, M., Liu, Y., He, J., Wang, Z., Wu, Z., Ji, D., 2021. In situ continuous hourly observations of wintertime nitrate, sulfate and ammonium in a megacity in the North China plain from 2014 to 2019: Temporal variation, chemical formation and regional transport. Chemosphere, 262, 127745.
Tian, M., Wang, H., Chen, Y., Zhang, L., Shi, G., Liu, Y., Yang, F., 2017. Highly time-resolved characterization of water-soluble inorganic ions in PM2.5 in a humid and acidic mega city in Sichuan Basin, China. Science of the Total Environment, 580, 224-234.
Truex, T. J., Pierson, W. R., & McKee, D. E., 1980. Sulfate in diesel exhaust. Environmental Science & Technology, 14, 1118-1121.
Tutsak, E., & Kocak, M., 2019. High time-resolved measurements of water-soluble sulfate, nitrate and ammonium in PM2.5 and their precursor gases over the Eastern Mediterranean. Science of the Total Environment, 672, 212-226.
Wang, G., Wang, H., Yu, Y., Gao, S., Feng, J., Gao, S., & Wang, L., 2003. Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China. Atmospheric Environment, 37, 2893-2902.
Vu, D., Roth, P., Berte, T., Yang, J., Cocker, D., Durbin, T.D., Karavalakis, G. and Asa-Awuku, A., 2019. Using a new Mobile Atmospheric Chamber (MACh) to investigate the formation of secondary aerosols from mobile sources: The case of gasoline direct injection vehicles. Journal of Aerosol Science, 133, 1-11.
Wang, L., Wen, L., Xu, C., Chen, J., Wang, X., Yang, L., & Zhang, Q., 2015. HONO and its potential source particulate nitrite at an urban site in North China during the cold season. Science of the Total Environment, 538, 93-101.
Wang, S., Yin, S., Zhang, R., Yang, L., Zhao, Q., Zhang, L., & Tang, X., 2019. Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China. Science of The Total Environment, 660, 47-56.
Wang, X., Jacob, D. J., Fu, X., Wang, T., Breton, M. L., Hallquist, M., Liao, H., 2020. Effects of Anthropogenic Chlorine on PM2.5 and Ozone Air Quality in China. Environmental Science & Technology, 54, 9908-9916.
Wu, P., Huang, X., Zhang, J., Luo, B., Luo, J., Song, H., Zhang, W., Rao, Z., Feng, Y., Zhang, J., 2019. Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis. Environmental Science and Pollution Research, 26, 2649-2661.
Xu, J., & Huang, M.-Q., 2020. Influence of Inorganic Gases on Formation and Chemical Composition of Monoaromatic Hydrocarbons Secondary Organic Aerosol. Chinese Journal of Analytical Chemistry, 48, 449-462.
Xu, J., Wang, Z., Yu, G., Qin, X., Ren, J., & Qin, D., 2014. Characteristics of water soluble ionic species in fine particles from a high altitude site on the northern boundary of Tibetan Plateau: Mixture of mineral dust and anthropogenic aerosol. Atmospheric Research, 143, 43-56.
Yang, C.-F.O., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment, 46, 279-288.
Yang, Y., Zhou, R., Yan, Y., Yu, Y., Liu, J., Di, Y., Wu, D., 2016. Seasonal variations and size distributions of water-soluble ions of atmospheric particulate matter at Shigatse. Tibetan Plateau. Chemosphere, 145, 560-567.
Yu, Y., Ding, F., Mu, Y., Xie, M., Wang, Q.g., 2020. High time-resolved PM2.5 composition and sources at an urban site in Yangtze River Delta, China after the implementation of the APPCAP. Chemosphere, 261, 127746.
Zhang, B., Zhou, T., Liu, Y., Yan, C., Li, X., Yu, J., Zheng, M., 2019. Comparison of water-soluble inorganic ions and trace metals in PM2.5 between online and offline measurements in Beijing during winter. Atmospheric Pollution Research, 10, 1755-1765.
Zhang, Y., Yang, L., Bie, S., Zhao, T., Huang, Q., Li, J., Wang, W., 2021. Chemical compositions and the impact of sea salt in atmospheric PM1 and PM2.5 in the coastal area. Atmospheric Research, 250, 105323.
Zheng, J., Hu, M., Du, Z., Shang, D., Gong, Z., Qin, Y., Guo, S., 2017. Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China. Atmospheric Chemistry and Physics, 17, 6853-6864.
蔡茗宇,2014。2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性,環境工程研究所碩士論文。國立中央大學。
張士昱,2016。氣膠收集裝置。中華民國發明專利第M515102號。
張士昱,2013。乾、濕兩用之氣體吸附裝置。中華民國發明專利第M467055
李崇德、周崇光、張士昱、莊銘棟、許文昌,2021。110 年度細懸浮微粒 (PM2.5)化學成分基測及分析計畫,期末報告(定稿本),行政院環境部,台北,110年12月。
陳威任,2018。2015~2016年背景、生質燃燒及雲霧事件影響下鹿林山氣膠水溶性無機離子短時間動態變化,環境工程研究所碩士論文。國立中央大學。
王韋智,2020。2019年春季高山與都市氣膠水溶性無機離子與光學特性短時間變化, 國立中央大學。
楊孟樵,2020。2017~2018年台灣平地與高山氣膠水溶性無機離子短時間動態變化特性, 國立中央大學。
梁紹庭,2021。2020年春季及秋季臺中市PM2.5水溶性無機離子短時間變化特性,環境工程研究所碩士論文。國立中央大學。
廖威理,2022。2021年冬季都市與2022年春季高山細懸浮微粒(PM2.5)水溶性無機離子與光學特性實時變化,環境工程研究所碩士論文。國立中央大學。 |