博碩士論文 108326017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:18.116.239.148
姓名 陳彥佑(Yan-You Chen)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2021年臺中市區與鹿林山區氣膠水溶性無機離子實時變化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2027-1-12以後開放)
摘要(中) 本文於2021年1到2月在臺中市區,3、4月在鹿林山區觀測觀測PM2.5 (氣動粒徑小於或等於2.5 μm的懸浮微粒) 水溶性無機離子(Water-soluble Inorganic Ions, WSIIs)實時變化以解析都市地區和高山地區的污染來源和形成。
臺中市區的主要WSIIs (NO3-、SO42-和NH4+)的動態變化和PM2.5相似,風速小於1.6 m s-1時容易造成污染物濃度增加,風速大於1.6 m s-1時,SO42-主要來自區域外,NO3-受到交通排放影響,Na+和Mg2+受到海鹽影響,Cl-除了海鹽外還有可能有其他污染源,NO2-質量濃度有明顯的日變化,主要的前驅污染物是NO2。
鹿林山站受到生質燃燒(Biomass Burning, BB)煙團影響時PM2.5和主要WSIIs平均質量濃度會有明顯上升;當發生山谷風時,WSIIs質量濃度也有所提升,顯示出山谷風帶來人為污染。在BB事件日觀察到雲霧事件,污染物濃度因為濕清除影而降低。在兩次BB事件日的下午,氣膠粒徑40 nm數目濃度有所提高,且100 nm以上微粒的體積濃度上升,顯示出氣膠吸濕增長特性,同時,主要WSIIs也有相似的濃度變化趨勢,顯示出鹿林山區WSIIs有細粒徑氣膠的貢獻。
本文以[NH4+]/[SO42-]莫耳濃度比值探討大氣主要WSIIs結合型態,發現臺中市區氨氣充足,主要WSIIs呈現(NH4)2SO4、NH4NO3、其他化合物,並有N2O5產生。鹿林山站氨氣較不充足,主要WSIIs除了(NH4)2SO4,可能還包含了NH4HSO4、H(NH4)3(SO4)2 (Letovicite)、NH4NO3等。
摘要(英) This article observes PM2.5 (suspended particles with aerodynamic diameters less than or equal to 2.5 μm) and water-soluble inorganic ions (WSIIs) in Taichung City from January to February 2021 and in the Lulin Mountain area in March and April, then analyze the sources and formation of pollution in urban and mountainous areas.
In the Taichung metropolitan area, the primary WSIIs (NO3-, SO42-, and NH4+) exhibited dynamic changes similar to PM2.5. When wind speeds were below 1.6 m s-1, pollutant concentrations tended to increase, while wind speeds above 1.6 m s-1 suggested that SO42- originated mainly from outside the region, NO3- was influenced by traffic emissions, Na+ and Mg2+ were affected by sea salt, and Cl- could come from both sea salt and other pollution sources. The mass concentration of NO2- showed significant diurnal variation, with NO2 being its primary precursor pollutant.
At the Lulin Mountain station, when affected by biomass burning (BB) smoke plumes, there is a significant increase in average PM2.5 and primary WSIIs mass concentrations. During valley wind occurrences, the mass concentrations of WSIIs also rise, indicating that valley winds contribute to anthropogenic pollution. During the BB event days, cloud and fog events were observed, leading to a decrease in pollutant concentrations due to wet removal effects. In the afternoons of the two days of BB events, the number concentration of aerosol particles measuring 40 nm increased, along with a rising volume concentration of particles greater than 100 nm. This demonstrates the hygroscopic growth characteristics of aerosols, while the primary WSIIs exhibited similar trends in concentration changes, indicating the contribution of fine particulate aerosols to WSIIs in the Lulin Mountain area.
This article discusses the combination patterns of the primary WSIIs in the atmosphere based on the molar concentration ratio of [NH4+]/[SO42-]. It finds that ammonia is abundant in Taichung City, and the main WSIIs present as (NH4)2SO4, NH4NO3, and other compounds, with the generation of N2O5. In the Lulin Mountain station, ammonia is less abundant, and the main WSIIs may include (NH4)2SO4, along with NH4HSO4, H(NH4)3(SO4)2 (Letovicite), and NH4NO3.
關鍵字(中) ★ 氣膠水溶性無機離子實時量測
★ 臺中市區
★ 鹿林山區
★ 氣膠化學
關鍵字(英) ★ Real-time measurement of water-soluble inorganic ions in aerosols
★ Taichung City
★ Lulin Mountain Area
★ aerosol chemistry
論文目次 摘要 VI
Abstract VII
目錄 IX
圖目錄 XII
表目錄 XV
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
第二章 文獻回顧 4
2.1 氣膠水溶性無機離子 4
2.1.1 WSIIs結合型態 5
2.1.2 WSIIs的粒徑分布 6
2.2 都市氣膠特性 7
2.2.1 主要WSIIs相互反應機制 9
2.2.2 NO2-形成機制 11
2.2.3 都市氣膠海鹽影響 12
2.3 高山氣膠特性 14
2.3.1 雲霧事件 16
2.3.2 山谷環流 18
2.3.3 長程傳輸 19
2.4 生質燃燒 20
2.5 氣膠WSIIs手自動比對 23
2.6 氣膠水溶性無機離子連續監測儀器 22
第三章 研究方法 23
3.1 研究架構 24
3.2 採樣地點與採樣週期 25
3.3 採樣儀器與方法 27
3.3.1 實時監測WSIIs與分析方法 28
3.3.2 離子層析儀偵測極限 30
3.4 大氣氣膠連續監測系統 32
3.4.1 半自動監測儀器 32
3.4.2 粒徑分布監測系統 34
3.4.3 監測儀器總攬 37
3.5 氣流軌跡模式(NOAA HYSPLIT) 39
3.6 硫氧化比值(SOR)與氮氧化比值(NOR) 40
3.7 手動儀器與自動儀器比對 41
3.8 環境氨氣與酸性氣體中和關係 43
第四章 結果與討論 44
4.1 臺中市水溶性無機離子及相關資料動態變化 44
4.1.1 臺中市水溶性無機離子及相關資料實時監測 45
4.1.2 臺中市高濃度事件及相關資料 54
4.1.3 臺中市高濃度事件NO2-與NO3-關係 70
4.1.4 臺中市海鹽影響 74
4.1.5 臺中市都會區統整 78
4.2 鹿林山水溶性無機離子及相關資料動態變化 80
4.2.1 鹿山測站水溶性無機離子、PM2.5、氣體動態變化 81
4.2.2 生質燃燒事件及相關資料 85
4.2.3 生質燃燒事件及前後差異比較 98
4.2.4 生質燃燒事件氣膠粒徑分布 102
4.2.5 鹿林山生質燃燒事件日統整 102
4.3 都市地區與高山地區環境氨氣中和比較 109
第五章 結論與建議 115
5.1 結論 115
5.2 建議 117
參考文獻 118
附錄一 鹿林山觀測期間氣流軌跡 124
附錄二 鹿林山觀測期間火點 141
附錄三 口試委員意見與回覆 143
參考文獻 Acharja, P., Kaushar A., Trivedi, D.K., Safai, P., Ghude, S., Prabhakaran, T., Rajeevan, M., 2020. Characterization of atmospheric traces gases and water soluble inorganic chemical ions of PM1 and PM2.5 at Indira Gandhi International Airport, New Delhi during 2017–18 winter. Science of The Total Environment, 729, 138800.
Andreae, M. O., & Rosenfeld, D., 2008. Aerosol–cloud–precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Science Reviews, 89, 13-41.
Andreae, M. O., & Merlet, P., 2001. Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955-966.
Chen, B. Y., Chan, C. C., Lee, C. T., Cheng, T. J., Huang, W. C., Jhou, J. C., Guo, Y. L., 2012. The association of ambient air pollution with airway inflammation in schoolchildren. American Journal of Epidemiology, 175, 764-774.
Chen, W. N., Chen, Y. C., Kuo, C. Y., Chou, C. H., Cheng, C. H., Huang, C. C., Liu, S. C., 2014. The real-time method of assessing the contribution of individual sources on visibility degradation in Taichung. Science of The Total Environment, 497, 219-228.
Chen, Y. C., Chou, C. C. K., Tsai, Y. J., Chang, S. Y., Chen, W. N., 2019. The hourly characteristics of aerosol chemical compositions under fog and high particle pollution events in Kinmen. Atmospheric Research, 223, 132-141.
Chen, W. R., Singh, A., Pani, S. K., Chang, S. Y., Chou, C. C. K., Chang, S. C., Lee, C. T., 2021a. Real-time measurements of PM2.5 water-soluble inorganic ions at a high-altitude mountain site in the western North Pacific: Impact of upslope wind and long-range transported biomass-burning smoke. Atmospheric Research, 260, 105686.
Chen, C.-L., Chen, T.-Y., Hung, H.-M., Tsai, P.-W., Chou, C. C. K., Chen, W.-N., 2021b. The influence of upslope fog on hygroscopicity and chemical composition of aerosols at a forest site in Taiwan. Atmospheric Environment, 246, 118150.
Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Su, H., 2016. Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events in China. Science Advances, 2, 1601530.
Chuang, M. T., Chou, C. C. K., Sopajaree, K., Lin, N. H., Wang, J. L., Sheu, G. R., Chang, Y. J. Lee, C. T., 2013. Characterization of aerosol chemical properties from near-source biomass burning in the northern Indochina during 7-SEAS/Dongsha experiment. Atmospheric Environment, 78, 72-81.
Chuang, M.-T., Lee, C.-T., Chou, C. C.-K., Lin, N.-H., Sheu, G.-R., Wang, J.-L., Young, C.-Y., 2014. Carbonaceous aerosols in the air masses transported from Indochina to Taiwan: Long-term observation at Mt. Lulin. Atmospheric Environment, 89, 507-516.
Chuang, M. T., Chou, C. C. K., Lin, C. Y., Lin, W. C., Lee, J. H., Li, M. H., Chen, Y. C., 2024. Source apportionment of PM2.5 episodes in the Taichung metropolitan area, Taiwan. Atmospheric Research, 311, 107666.
Clark, W. E., & Whitby, K. T., 1975. Measurements of aerosols produced by the photochemical oxidation of SO2 in air. Journal of Colloid and Interface Science, 51, 477-490.
Drewnick, F., Schwab, J. J., Hogrefe, O., Peters, S., Husain, L., Diamond, D., Webber, R., Demerjian, K. L., 2003. Intercomparison and evaluation of four semi-continuous PM2.5 sulfate instruments. Atmospheric Environment, 37, 3335-3350.
Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Streets, D. G., 2008. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmospheric Environment, 42, 2023-2036.
Gao, X., Xue, L., Wang, X., Wang, T., Yuan, C., Gao, R., Wang, W., 2012. Aerosol ionic components at Mt. Heng in central southern China: abundances, size distribution, and impacts of long-range transport. Science of The Total Environment, 433, 498-506.
Grantz, D., Garner, J., Johnson, D., 2003. Ecological effects of particulate matter. Environment International, 29, 213-239.
Jung, C. H., & Kim, Y. P., 2006. Numerical estimation of the effects of condensation and coagulation on visibility using the moment method. Journal of Aerosol Science, 37, 143-161.
Kim, H., & Zhang, Q. J. C. (2019). Chemistry of new particle growth during springtime in the Seoul metropolitan area, Korea. Chemosphere, 225, 713-722.
Kotnala, G., Mandal, T. K., Sharma, S. K. Kotnala, R. K., 2020. Emergence of Blue Sky Over Delhi Due to Coronavirus Disease (COVID-19) Lockdown Implications. Aerosol Science and Engineering, 4 , 228-238.
Kulmala, M., Petaja, T., Nieminen, T., Sipila, M., Manninen, H. E., Lehtipalo, K., Kerminen, V. M., 2012. Measurement of the nucleation of atmospheric aerosol particles. Nature Protocols, 7, 1651-1667.
Li, Z., Liu, Y., Lin, Y., Gautam, S., Kuo, H. C., Tsai, C. J., Wu, G. J., 2017a. Development of an automated system (PPWD/PILS) for studying PM2.5 water-soluble ions and precursor gases: Field measurements in two cities, Taiwan. Aerosol and Air Quality Research, 17, 426-443.
Li, H., Ma, Y., Duan, F., He, K., Zhu, L., Huang, T., Zhang, Z., 2017b. Typical winter haze pollution in Zibo, an industrial city in China: Characteristics, secondary formation, and regional contribution. Environmental Pollution, 229, 339-349.
Lin, C. Y., & Chen, C. S., 2002. A study of orographic effects on mountain-generated precipitation systems under weak synoptic forcing. Meteorology and Atmospheric Physics, 81, 1-25.
Lin, C. Y., Sheng, Y. F., Chen, W. C., Chou, C. C., Chien, Y. Y., Chen, W. M., 2021. Air quality deterioration episode associated with a typhoon over the complex topographic environment in central Taiwan. Atmospheric Chemistry and Physics, 21, 16893-16910.
Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., Wang, Y., 2017. Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere, 183, 119-131.
Liu, Y., Fan, Q., Chen, X., Zhao, J., Ling, Z., Hong, Y., Wei, X., 2018. Modeling the impact of chlorine emissions from coal combustion and prescribed waste incineration on tropospheric ozone formation in China. Atmospheric Chemistry and Physics, 18, 2709-2724.
Liu, Pengfei, Ye, C., Xue, C., Zhang, C., Mu, Y., Sun, X., 2020. Formation mechanisms of atmospheric nitrate and sulfate during the winter haze pollution periods in Beijing: gas-phase, heterogeneous and aqueous-phase chemistry. Atmospheric Chemistry and Physics, 20, 4153-4165.
Ma, W., Wenga, T., Frandsen, F. J., Yan, B., & Chen, G., 2020. The fate of chlorine during MSW incineration: Vaporization, transformation, deposition, corrosion and remedies. Progress in Energy and Combustion Science, 76, 100789.
Mazoyer, M., Burnet, F., Denjean, C., Roberts, G. C., Haeffelin, M., Dupont, J.-C., Elias, T., 2019. Experimental study of the aerosol impact on fog microphysics. Atmospheric Chemistry and Physics, 19, 4323-4344.
Mwaniki, G. R., Rosenkrance, C., Wallace, H. W., Jobson, B. T., Erickson, M. H., Lamb, B. K., VanReken, T. M., 2014. Factors contributing to elevated concentrations of PM2.5 during wintertime near Boise, Idaho. Atmospheric Pollution Research, 5, 96-103.
Pani, S. K., Chantara, S., Khamkaew, C., Lee, C.-T., Lin, N.-H., 2019. Biomass burning in the northern peninsular Southeast Asia: Aerosol chemical profile and potential exposure. Atmospheric Research, 224, 180-195.
Pathak, R. K., Louie, P. K., & Chan, C. K., 2004. Characteristics of aerosol acidity in Hong Kong. Atmospheric Environment, 38, 2965-2974.
Pio, C. A., & Lopes, D. A., 1998. Chlorine loss from marine aerosol in a coastal atmosphere. Journal of Geophysical Research: Atmospheres, 103, 25263-25272.
Salam, A., Assaduzzaman, M., Hossain, M. N., & Siddiki, A. K. M., 2015. Water soluble ionic species in the atmospheric fine particulate matters (PM2.5) in a Southeast Asian mega city (Dhaka, Bangladesh). Open Journal of Air Pollution, 4, 99.
Shaw, G. E., 2007. Aerosols at a mountaintop observatory in Arizona. Journal of Geophysical Research: Atmospheres, 10, 11605–11621.
Shon, Z.-H., Kim, K.-H., Song, S.-K., Jung, K., Kim, N.-J., Lee, J.-B., 2012. Relationship between water-soluble ions in PM2.5 and their precursor gases in Seoul megacity. Atmospheric environment, 59, 540-550.
Singh, A., Satish, R. V., & Rastogi, N. J. A. E., 2019. Characteristics and sources of fine organic aerosol over a big semi-arid urban city of western India using HR-ToF-AMS. Atmospheric Environment, 208, 103-112.
Song, C. H., Park, M. E., Lee, E. J., Lee, J. H., Lee, B. K., Lee, D. S., Kim, J., Han, J. S., Moon, K. J., Kondo, Y., 2009. Possible particulate nitrite formation and its atmospheric implications inferred from the observations in Seoul, Korea. Atmospheric Environment, 43, 2168-2173.
Sun, P., Nie, W., Chi, X., Xie, Y., Huang, X., Xu, Z., Ding, A., 2018. Two years of online measurement of fine particulate nitrate in the western Yangtze River Delta: influences of thermodynamics and N2O5 hydrolysis. Atmospheric Chemistry and Physics, 18, 17177-17190.
Tang, M., Liu, Y., He, J., Wang, Z., Wu, Z., Ji, D., 2021. In situ continuous hourly observations of wintertime nitrate, sulfate and ammonium in a megacity in the North China plain from 2014 to 2019: Temporal variation, chemical formation and regional transport. Chemosphere, 262, 127745.
Tian, M., Wang, H., Chen, Y., Zhang, L., Shi, G., Liu, Y., Yang, F., 2017. Highly time-resolved characterization of water-soluble inorganic ions in PM2.5 in a humid and acidic mega city in Sichuan Basin, China. Science of the Total Environment, 580, 224-234.
Truex, T. J., Pierson, W. R., & McKee, D. E., 1980. Sulfate in diesel exhaust. Environmental Science & Technology, 14, 1118-1121.
Tutsak, E., & Kocak, M., 2019. High time-resolved measurements of water-soluble sulfate, nitrate and ammonium in PM2.5 and their precursor gases over the Eastern Mediterranean. Science of the Total Environment, 672, 212-226.
Wang, G., Wang, H., Yu, Y., Gao, S., Feng, J., Gao, S., & Wang, L., 2003. Chemical characterization of water-soluble components of PM10 and PM2.5 atmospheric aerosols in five locations of Nanjing, China. Atmospheric Environment, 37, 2893-2902.
Vu, D., Roth, P., Berte, T., Yang, J., Cocker, D., Durbin, T.D., Karavalakis, G. and Asa-Awuku, A., 2019. Using a new Mobile Atmospheric Chamber (MACh) to investigate the formation of secondary aerosols from mobile sources: The case of gasoline direct injection vehicles. Journal of Aerosol Science, 133, 1-11.
Wang, L., Wen, L., Xu, C., Chen, J., Wang, X., Yang, L., & Zhang, Q., 2015. HONO and its potential source particulate nitrite at an urban site in North China during the cold season. Science of the Total Environment, 538, 93-101.
Wang, S., Yin, S., Zhang, R., Yang, L., Zhao, Q., Zhang, L., & Tang, X., 2019. Insight into the formation of secondary inorganic aerosol based on high-time-resolution data during haze episodes and snowfall periods in Zhengzhou, China. Science of The Total Environment, 660, 47-56.
Wang, X., Jacob, D. J., Fu, X., Wang, T., Breton, M. L., Hallquist, M., Liao, H., 2020. Effects of Anthropogenic Chlorine on PM2.5 and Ozone Air Quality in China. Environmental Science & Technology, 54, 9908-9916.
Wu, P., Huang, X., Zhang, J., Luo, B., Luo, J., Song, H., Zhang, W., Rao, Z., Feng, Y., Zhang, J., 2019. Characteristics and formation mechanisms of autumn haze pollution in Chengdu based on high time-resolved water-soluble ion analysis. Environmental Science and Pollution Research, 26, 2649-2661.
Xu, J., & Huang, M.-Q., 2020. Influence of Inorganic Gases on Formation and Chemical Composition of Monoaromatic Hydrocarbons Secondary Organic Aerosol. Chinese Journal of Analytical Chemistry, 48, 449-462.
Xu, J., Wang, Z., Yu, G., Qin, X., Ren, J., & Qin, D., 2014. Characteristics of water soluble ionic species in fine particles from a high altitude site on the northern boundary of Tibetan Plateau: Mixture of mineral dust and anthropogenic aerosol. Atmospheric Research, 143, 43-56.
Yang, C.-F.O., Lin, N.-H., Sheu, G.-R., Lee, C.-T., Wang, J.-L., 2012. Seasonal and diurnal variations of ozone at a high-altitude mountain baseline station in East Asia. Atmospheric Environment, 46, 279-288.
Yang, Y., Zhou, R., Yan, Y., Yu, Y., Liu, J., Di, Y., Wu, D., 2016. Seasonal variations and size distributions of water-soluble ions of atmospheric particulate matter at Shigatse. Tibetan Plateau. Chemosphere, 145, 560-567.
Yu, Y., Ding, F., Mu, Y., Xie, M., Wang, Q.g., 2020. High time-resolved PM2.5 composition and sources at an urban site in Yangtze River Delta, China after the implementation of the APPCAP. Chemosphere, 261, 127746.
Zhang, B., Zhou, T., Liu, Y., Yan, C., Li, X., Yu, J., Zheng, M., 2019. Comparison of water-soluble inorganic ions and trace metals in PM2.5 between online and offline measurements in Beijing during winter. Atmospheric Pollution Research, 10, 1755-1765.
Zhang, Y., Yang, L., Bie, S., Zhao, T., Huang, Q., Li, J., Wang, W., 2021. Chemical compositions and the impact of sea salt in atmospheric PM1 and PM2.5 in the coastal area. Atmospheric Research, 250, 105323.
Zheng, J., Hu, M., Du, Z., Shang, D., Gong, Z., Qin, Y., Guo, S., 2017. Influence of biomass burning from South Asia at a high-altitude mountain receptor site in China. Atmospheric Chemistry and Physics, 17, 6853-6864.
蔡茗宇,2014。2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性,環境工程研究所碩士論文。國立中央大學。
張士昱,2016。氣膠收集裝置。中華民國發明專利第M515102號。
張士昱,2013。乾、濕兩用之氣體吸附裝置。中華民國發明專利第M467055
李崇德、周崇光、張士昱、莊銘棟、許文昌,2021。110 年度細懸浮微粒 (PM2.5)化學成分基測及分析計畫,期末報告(定稿本),行政院環境部,台北,110年12月。
陳威任,2018。2015~2016年背景、生質燃燒及雲霧事件影響下鹿林山氣膠水溶性無機離子短時間動態變化,環境工程研究所碩士論文。國立中央大學。
王韋智,2020。2019年春季高山與都市氣膠水溶性無機離子與光學特性短時間變化, 國立中央大學。
楊孟樵,2020。2017~2018年台灣平地與高山氣膠水溶性無機離子短時間動態變化特性, 國立中央大學。
梁紹庭,2021。2020年春季及秋季臺中市PM2.5水溶性無機離子短時間變化特性,環境工程研究所碩士論文。國立中央大學。
廖威理,2022。2021年冬季都市與2022年春季高山細懸浮微粒(PM2.5)水溶性無機離子與光學特性實時變化,環境工程研究所碩士論文。國立中央大學。
指導教授 李崇德 裡崇裡(Chung-Te Lee) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明