博碩士論文 111323123 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:216 、訪客IP:3.14.126.32
姓名 吳宇文(Yu-Wen Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱
(Augmentation of a Translational Mechanism for Six Degrees of Freedom)
相關論文
★ 神經內視鏡的球面解耦機械手臂設計★ 新型機電整合之多色3-D列印機
★ Workspace Characterization of a 3-RRR Spherical Parallel Mechanism★ 對於遠程超聲波檢查機器人機械手控制裝置的設計
★ Design of a Spherical Reconfigurable Linkage for the Control of Mechanism Center of Rotation★ Formulation of a New Index for the Evaluation of Mechanism Workspace
★ Kinematic Optimization of a Reconfigurable Spherical Parallel Mechanism for Robotic Assisted Craniotomy★ Identification of Spherical Mechanism Parameter Errors using a Genetic Algorithm
★ Kinematic Design of Double Pantographic Linkage for the Tele-Echography on Intra-Incubated Newborns★ Design of a Five-Degrees of Freedom Statically Balanced Mechanism with Multi-Directional Functionality
★ 應用於股骨復位手術中之機器人機構設計★ Design of an Augmented Clamping Instrument for Advanced Aneurysm Surgery
★ Contribution to the Design of a Robotic Platform for Liposuction
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 並聯機構因其相較於串列機構的特性而受到越來越多的關注:更高的運動性能、有效載荷、剛性等。然而,整合額外的運動鏈也會導致更多的內部碰撞、更多的奇異點和更小的工作空間。
本研究展示了純平移機構 R-CUBE 的增強。原始結構具有的三自由度被擴展至六自由度。該方法通過修改其末端連桿以充分利用其依賴的平面運動學來實現。原本的兩個線性自由度,現在變為兩個線性自由度加上一個角度自由度,且該角度自由度可被主動操作。由於在此方面可能有著多種具有平面運動的架構,本文推導並給出了一種統一化速度模型的一般形式,並將其寫成帶有係數函數的矩陣形式來表示。
提出了三種不同的遠端連桿結構,並為每一種結構完成了速度模型的統一化,同時確定了奇異性。透過 MATLAB 和 ADAMS 之間的比較研究對理論模型進行了驗證。隨後,對兩個不同版本的 AR-CUBE 進行了尺寸優化,並在角度可達性方面進行了比較。
摘要(英) Parallel mechanisms have been subject to an increasing attention due to their characteristics in comparison with their serial counterparts: higher kinematics performances, payloads, stiffness etc. However, the integration of additional kinematic chains causes more internal collisions, more singularities and smaller workspace.
The present study demonstrates the augmentation of purely translational mechanism known as the R-CUBE. The three Degrees of Freedom of the original architecture is augmented to a six-DoF. The method consists in modifying its distal linkages to fully exploit the planar kinematics they normally rely on. Instead of two linear DoF, they now have two linear and one angular DoF, the last one being actively operated. Because several possible architectures with planar motion can be used in this regard, a general form for the uniformized velocity model is derived and written in a matrix from with coefficient functions.
Three different distal linkage architectures are proposed and for each of them, the uniformized velocity model is completed and singularity are identified. The theoretical models are validated using a comparison study between MATLAB and ADAMS. Two different versions of the AR-CUBE are then subjected to a dimensional optimization and compared in terms of angular reachability.
關鍵字(中) ★ 增強機構
★ 並聯機構
★ 平移機構
★ R-CUBE
★ 運動學分析
★ 最佳化
關鍵字(英) ★ Augmented mechanism
★ Parallel mechanism
★ Translational mechanism
★ R-CUBE
★ Kinematics analysis
★ Optimization
論文目次 摘要 .................................................................................................................................... i
Abstract ............................................................................................................................ ii
Acknowledgments .......................................................................................................... iii
Table of Content ............................................................................................................. iv
List of Figures ................................................................................................................. vi
Explanation of Symbols ............................................................................................... viii
1 Introduction .............................................................................................................. 1
1-1 Translational Mechanisms ................................................................................ 1
1-1-1 Delta robot ......................................................................................... 1
1-1-2 Orthoglide ......................................................................................... 2
1-1-3 Tripteron ............................................................................................ 4
1-1-4 Other cartesian mechanisms .............................................................. 6
1-2 Augmented Translational Mechanisms ............................................................. 7
1-3 Research interests and objectives .................................................................... 10
2 Augmentation of the R-CUBE Mechanism ......................................................... 13
2-1 Presentation of the Origin R-CUBE ................................................................ 13
2-1-1 Mechanical Architecture ................................................................. 13
2-1-2 Analysis of the R-CUBE ................................................................. 14
2-2 Integration of the New Distal Linkage ............................................................ 15 2-3 Uniformized Velocity Model and Singularities of the AR-CUBE ................. 17
3 Completion of the AR-CUBE Series Models ....................................................... 19
3-1 Inverse Kinematics Model of the AR-CUBE ................................................. 19
3-1-1 RRRR Linkage ................................................................................ 19
3-1-2 RRRR Linkage ................................................................................ 20
3-1-3 RPRR Linkage ................................................................................ 21
3-2 Velocity Models of the AR-CUBE ................................................................. 22
v
3-2-1 RRRR Linkage ................................................................................ 22
3-2-2 RRRR Linkage ................................................................................ 23
3-2-3 RPRR Linkage ................................................................................ 23
3-3 Validation of the Models ................................................................................. 24
3-3-1 RRRR Linkage ................................................................................ 24
3-3-2 RRRR Linkage ................................................................................ 28
3-3-3 RPRR Linkage ................................................................................ 29
4 Workspace Optimization ...................................................................................... 33
4-1 Linear workspace constraint ........................................................................... 33
4-2 Angular workspace criterion ........................................................................... 33
4-3 Optimization Results ....................................................................................... 36
5 Conclusion .............................................................................................................. 40
Reference ........................................................................................................................ 41
參考文獻 [1] Clavel, R., “Device for the Movement and Positioning of an Element in Space,” U.S. Patent No. 4,976,582, 1990.
[2] Guglielmetti, P., Longchamp, R. “A closed form inverse dynamics model of the delta parallel robot,” International Federation of Automatic Control Proceedings Volumes, 27(14), pp. 51-56, 1994.
[3] Miller, K., “Experimental Verification of Modeling of DELTA Robot Dynamics by Direct Application of Hamilton′s Principle,” Proceedings of 1995 IEEE international conference on robotics and automation, 1, pp. 532-537, 1995.
[4] Vischer, P., Clavel, R., “Kinematic Calibration of the Parallel Delta Robot,” Robotica, 16(2), pp. 207-218, 1998.
[5] Laribi, M.A., Romdhane, L., Zeghloul, S., “Analysis and Dimensional Synthesis of the DELTA Robot for a Prescribed Workspace,” Mechanism and Machine Theory, 42, pp. 859-870, 2007.
[6] Brinker, J., Corves, B., Takeda, Y., “Kinematic Performance Evaluation of High-Speed Delta Parallel Robots Based on Motion/Force Transmission Indices,” Mechanism and Machine Theory, 125, pp. 111-125, 2018.
[7] Nguyen, V.L., Lin, C.Y., Kuo, C.H., “Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules,” Mechanism and Machine Theory, 154, p. 104046, 2020.
[8] Wenger, P., Chablat, D., “Kinematic Analysis of a New Parallel Machine Tool: The Orthoglide,” Advances in Robot Kinematics, pp. 305–314, 2000.
[9] Chablat, D., Wenger, P., Merlet, J., “Workspace Analysis of the Orthoglide using Interval Analysis,” Advances in Robot Kinematics, pp. 397-406, 2002.
[10] Guegan, S., Khalil, W., Lemoine, P., “Identification of the Dynamic Parameters of the Orthoglide,” IEEE International Conference on Robotics and Automation, 3, pp. 3272-3277, 2003.
[11] Chablat, D., Wenger, P., “Architecture Optimization of a 3-DOF Translational Parallel Mechanism for Machining Applications, the Orthoglide,” IEEE Transactions on Robotics and Automation, 19(3), pp. 403-410, 2003.
[12] Pashkevich, A., Wenger, P., Chablat, D., “Design Strategies for the Geometric
Synthesis of Orthoglide-Type Mechanisms,” Mechanism and Machine Theory, 40(8), pp. 907-930, 2005.
[13] Caro, S., Wenger, P., Bennis, F., Chablat, D., “Sensitivity Analysis of the Orthoglide: A Three-DOF Translational Parallel Kinematic Machine,” ASME Journal of Mechanical Design, 128(2), pp. 392-402, 2006.
[14] Majou, F., Gosselin, C., Wenger, P., Chablat, D., “Parametric stiffness analysis of the Orthoglide,” Mechanism and machine theory, 42(3), pp. 296-311,2007.
[15] Chablat D., Wenger P., Staicu, S., “Dynamics of the Orthoglide Parallel Robot”, UPB Scientific Bulletin, Series D: Mechanical Engineering, 71(3), pp. 3-16, 2009.
[16] Geng, J., Arakelian, V., Chablat, D., Lemoine, P., “Shaking Force Balancing of the Orthoglide,” Advances in Service and Industrial Robotics, Mechanisms and Machine Science, 84, pp. 227-234, 2020.
[17] Kong, X., Gosselin, C.M., “Kinematics and Singularity Analysis of a Novel Type of 3-CRR 3-DOF Translational Parallel Manipulator,” The International Journal of Robotics Research, 21(9), pp. 791-798, 2002.
[18] Kim, H.S., Tsai, L.W., “Design Optimization of a Cartesian Parallel Manipulator,” ASME Journal of Mechanical Design, 125(1), pp. 43-51, 2003.
[19] Briot, S., Bonev, I.A. “Pantopteron: A New Fully Decoupled 3DOF Translational Parallel Robot for Pick-and-Place Applications,” ASME Journal Mechanisms and Robotics, 1(2), p. 021001, 2009.
[20] Yahyapour, I., Hasanvand, M., Masouleh, M.T., Yazdani, M., Tavakoli, S., “On the Inverse Dynamic Problem of a 3-PRRR Parallel Manipulator, the Tripteron,” First RSI/ISM International Conference on Robotics and Mechatronics (ICRoM), pp. 390-395, 2013.
[21] Sharifzadeh, M., Arian, A., Salimi, A., Masouleh, M.T., Kalhor, A., An Experimental Study on the Direct & Indirect Dynamic Identification of an Over-Constrained 3-DOF Decoupled Parallel Mechanism,” Mechanism and Machine Theory, 116, pp. 178-202, 2017.
[22] Arian, A., Danaei, B., Tale Masouleh, M. “Kinematic and Dynamic Analysis of Tripteron, an Over-Constrained 3-DOF Translational Parallel Manipulator, Through Newton-Euler Approach,” AUT Journal of Modeling and Simulation, 50(1), pp. 61-70, 2018.
[23] Tremblay, A., Baron, L., “Geometrical Synthesis of Star-Like Topology Parallel Manipulators with a Genetic Algorithm,” Proceedings of IEEE International Conference
on Robotics and Automation, 3, pp. 2446-2451, 1999.
[24] Tsai, L. W., Joshi, S., “Kinematics and Optimization of a Spatial 3-UPU Parallel Manipulator,” Journal of Mechanical Design, 122(4), pp. 439-446, 2000.
[25] Li, Y., Xu, Q., “Kinematic Analysis and Design of a New 3-DOF Translational Parallel Manipulator,” ASME Journal of Mechanical Design, 128(4), pp. 729-737, 2006.
[26] Li, Y., Xu, Q., “Stiffness Analysis for a 3-PUU Parallel Kinematic Machine,” Mechanism and Machine Theory, 43(2), pp.186-200, 2008.
[27] Callegari, M., Palpacelli, M.C., “Prototype Design of a Translating Parallel Robot,” Meccanica, 43(2), pp. 133-151, 2008.
[28] Ruggiu, M., “Kinematics analysis of the CUR translational manipulator,” Mechanism and Machine Theory, 43(9), pp. 1087-1098, 2008.
[29] Arata, J., Kondo, H., Sakaguchi, M., Fujimoto, H., “Development of a Haptic Device ‘DELTA-4’ Using Parallel Link Mechanism,” IEEE International Conference on Robotics and Automation, pp. 294-300, 2009.
[30] Cho, M.K., Huang, S.Y., Lan, C.C., “Design of a Novel Haptic Device for Bilateral Teleoperations Requiring Accurate Force Interaction,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 74-79, 2019.
[31] Lai, Y.H., Huang, S.Y., Lan, C.C., “A Force-Controlled Parallel Robot for Large-Range Stiffness Rendering in Three Dimensions,” IEEE Robotics and Automation Letters, 7(2), pp. 1340-1347, 2022.
[32] Seward, N., Bonev, I.A., “A New 6-DOF Parallel Robot with Simple Kinematic Model,” IEEE International Conference on Robotics and Automation (ICRA), pp. 4061-4066, 2014.
[33] Cherchelanov, E., Bonev, I.A., “A Novel Three-Legged 6-DOF Parallel Robot with Simple Kinematics,” Transactions of the Canadian Society for Mechanical Engineering, 44(4), pp. 558-565, 2020.
[34] Glazunov, V., Nosova, N., Kheylo, S., Tsarkov, A., “Design and Analysis of the 6-DOF Decoupled Parallel Kinematics Mechanism,” Dynamic Decoupling of Robot Manipulators, Mechanisms and Machine Science, 56, pp. 125-170, 2018.
[35] Chen, C., Gayral, T., Caro, S., Chablat, D., Moroz, G., Abeywardena, S., “A Six Degree of Freedom Epicyclic-Parallel Manipulator,” Journal of Mechanisms and Robotics, 4(4), p. 041011, 2012.
[36] Li, W., Gao, F., Zhang, J., “R-CUBE, a Decoupled Parallel Manipulator only with Revolute Joints,” Mechanism and Machine Theory, 40(4), pp. 467-473, 2005.
[37] Hao, K., Ning, Y., “Kinematics Identification and Control of R-Cube Parallel Robots Only with Revolute Joints,” The Proceedings of the Multiconference on “Computational Engineering in Systems Applications”, pp. 2114-2121, 2006.
[38] Dede, M.I.C., Selvi, O., Bilgincan, T., Kant, Y., “Design of a haptic device for teleoperation and virtual reality systems,” IEEE International Conference on Systems, Man and Cybernetics, pp. 3623-3628, 2009.
[39] Bilgincan, T., Dede, M.I.C., “Development of an R-Cube-Based General Purpose Haptic Device System,” Proceedings of the ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, 3, pp. 675-682, 2010.
[40] Dede, M.I.C., Taner, B., Bilgincan, T., Ceccarelli, M., “Kinematic Analysis Validation and Calibration of a Haptic Interface,” Advances on Theory and Practice of Robots and Manipulators, Mechanisms and Machine Science, 22, pp. 375-381, 2014.
[41] Gorgulu, I., Maaroof, O.W.N., Taner, B., Dede, M.I.C., Ceccarelli, M., “Experimental Verification of Quasi-Static Equilibrium Analysis of a Haptic Device,” Proceedings of the International Symposium of Mechanism and Machine Science, 2017 AzC IFToMM, pp. 57-65, Baku, Azerbaijan, 2017.
[42] Dede, M.I.C., Maaroof, O.W.N., Ceccarelli, M., “Analytical Dynamic Analysis of a Kinesthetic Haptic Device,” Journal of Science and Engineering, 20(59), pp. 492-508, 2018.
[43] Carbone, G., Acinapura, A., Mundo, D., Gorgulu, I., Dede, M.I.C., “Structural Compliance Effects on the Accuracy and Safety of a R-CUBE Haptic Device,” Advances in Intelligent Systems and Computing, 980, pp. 463-470, 2020.
[44] Gorgulu, I., Dede, M.I.C, “A New Stiffness Performance Index: Volumetric Isotropy Index,” Machines, 7(2), 44, 2019.
[45] Gorgulu, I., Dede, M.I.C., “Computation Time Efficient Stiffness Analysis of the Modified R-CUBE Mechanism,” Advances in Italian Mechanism Science, Mechanism and Machine Science, 68, pp. 231-239, 2019.
[46] Sekendiz, V., Gorgulu, I., Karabulut, M.G., Kiper, G., Dede, M.I.C.,” Manipulator Design for a Haptic System with Improved Performance,” Proceedings of Asian MMS 2018, Mechanism and Machine Science, pp. 15-28, 2021.
指導教授 伊泰龍(Terence Essomba) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明