博碩士論文 111323136 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:124 、訪客IP:52.14.205.130
姓名 劉育愷(Yu-Kai-Liu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基底運動引發板結構動態反應之理論分析與實驗量測
(Theoretical Analysis and Experimental Measurement of the Dynamic Response of Plate Structures Induced by Base Excitation)
相關論文
★ 應用機器視覺於機械手臂隨機物件夾取 與三維人體姿態偵測★ 矩形平板施加點質量陣列的振動特性與暫態波傳分析與波源歷時反算應用
★ 矩形平板部分埋沒於顆粒體之動態反應與振動特性★ 透過質量陣列控制撓曲波傳之理論分析及設計應用
★ 以雙向耦合離散元素法與有限元素法模擬顆粒體在矩形板振動下產生的克拉尼圖與反克拉尼圖★ 紅外線光彈技術於矽晶圓應力檢測之開發應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-20以後開放)
摘要(中) 本文透過理論分析、有限元素模擬和實驗量測,探討矩形平板受基底運動所引發的頻率域反應與暫態波傳行為,並且藉由雙向耦合有限元素法(FEM)與離散元素法(DEM)模擬顆粒體受平板振動所產生的動態特性,探討基底加速度對顆粒體形成克拉尼圖(Chladni patterns)之影響。
本文首先建構基底激振板結構之理論模型,以疊加法求出共振頻率和模態形狀等振動特徵。在實驗量測上,分別使用鋼珠撞擊和振盪器激振兩種方法激發平板動態行為,將平板暫態應變訊號藉由快速傅立葉轉換 FFT 轉換至頻域獲得共振頻率和頻率響應,平板上顆粒體形成克拉尼圖觀察各頻率下的模態形狀。理論、實驗與模擬對於振動特徵的比較中,顯示共振頻率與模態形狀皆具有良好的對應性,此外模擬結果中的節線也與克拉尼圖實驗中顆粒停留位置相吻合,結果也顯示模態形狀的對稱性和特定模態出現的
機制有關。
暫態波傳分析結合以上振動分析結果為基礎,使用模態展開法,以模態形狀與時間函數建構平板之暫態波傳理論解。本文理論分析均考慮阻尼效應,將平板暫態應變使用短時傅立葉轉換STFT得到訊號各模態的頻率響應衰減趨勢,計算出各模態阻尼比,輸入於考慮阻尼比效應的暫態波傳理論解中,以獲得平板之暫態理論解;實驗量測使用振盪器激振板結構來激發平板動態行為,量測平板因基底激振所產生的暫態應變訊號,將實驗量測結果與有限元素模擬和理論分析結果比較,在定頻激振實驗中,模擬與理論計算出的暫態應變無論是波形或是量值均與實驗十分吻合,而在掃頻激振實驗中,模擬與
理論計算出的暫態應變的波形與實驗中有所差異,這是因為實驗系統的共振頻與理論有些許差異所導致的。最後通過多種基底激振波源,驗證考慮阻尼效應的平板暫態波傳理論解之準確性。
最後,本文探討四邊自由平板之頻率域反應與顆粒體受平板振動所產生之動態行為。本文使用有限元素模擬探討四邊自由平板之頻率域反應,並比較不同邊界條件產生克拉 尼圖之機制。本文採用雙向耦合離散元素法(DEM)與有限元素法(FEM),模擬顆粒體在彈性矩形板上的動態行為,探討顆粒體在各種基底加速度下的顆粒聚集情況,將模擬結果與實驗進行比較,驗證此方法之準確性。
摘要(英) This study investigates the frequency response and transient wave propagation behavior of a rectangular plate induced by base excitation through theoretical analysis, finite element simulation, and experimental measurement. The frequency response includes vibration
characteristics and displacement field response. Additionally, the dynamic characteristics of
granular materials induced by plate vibration are explored using a two-way coupled finite
element method (FEM) and discrete element method (DEM) simulation, and the influence of
dimensionless acceleration on the formation of Chladni patterns in granular materials is
examined.
In this study, the theoretical model utilizes the superposition method to obtain the natural
frequencies and mode shapes. In experimental measurements, both steel ball impact and shaker
excitation are used to excite the plate′s dynamic behavior. The transient strain signals of the
plate are obtained through FFT transformation to acquire the resonant frequency and frequency
response. Simultaneously, the mode shapes at different frequencies are observed through the
Chladni patterns formed by the particles on the plate. Comparisons between theoretical,
experimental, and simulation results for vibration characteristics show a good correspondence
in both resonant frequencies and mode shapes. Furthermore, the nodal lines in the simulation
results coincide with the particle resting positions in the Chladni pattern experiments. The
results also indicate that the symmetry of the mode shape is related to the mechanism of specific
mode appearance.
Based on the vibration analysis results, the transient wave propagation analysis utilizes the
modal expansion method to construct a theoretical solution for the transient wave propagation
of the plate using mode shapes and time functions. The theoretical analysis in this study
considers the damping effect, and the short-time Fourier transform is applied to the transient
strain of the plate to obtain the frequency response decay trend of each mode. The damping
iii
ratios of each mode are calculated and input into the theoretical solution considering the
damping ratio effect to obtain the transient theoretical solution of the plate. In the experiment,
a shaker is used to excite the plate structure to generate transient strain signals during dynamic
vibration. By comparing the experimental measurement results with the finite element
simulation and theoretical analysis results, it is found that in the constant-frequency excitation
experiment, the simulated and theoretically calculated transient strains agree well with the
experimental results in terms of both waveform and magnitude. However, in the swept
frequency excitation experiment, there are some differences in the waveforms of the simulated
and theoretically calculated transient strains compared to the experiment, which is caused by the slight difference between the resonant frequency of the experimental system and the theoretical value. Finally, the accuracy of the transient wave propagation theoretical solution considering the damping effect is verified by applying different types of wave sources to the base of the structure.
Finally, this study explores the frequency response of a free-edge rectangular plate and the
dynamic behavior of granular materials induced by plate vibration. The finite element simulation is used to investigate the frequency response of the free-edge rectangular plate, and the mechanisms of Chladni patterns generated under different boundary conditions are compared. In this paper, a two-way coupled discrete element method (DEM) and finite element method (FEM) are used to simulate the dynamic behavior of granular materials on an elastic
rectangular plate. The particle aggregation under different dimensionless accelerations is investigated, and the simulation results are compared with the experiments to verify the accuracy of this method
關鍵字(中) ★ 板殼理論
★ 振動
★ 克拉尼圖
★ 暫態波傳
★ 阻尼比
關鍵字(英) ★ plate theory
★ vibration
★ chladni pattern
★ wave propagation
★ damping ratio
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 2
1-3 內容簡介 3
第二章 實驗儀器及感測原理介紹 5
2-1 PVDF壓電薄膜應變量測系統 5
2-2 雷射位移計 7
2-3 振盪器 8
2-4 函數產生器 8
2-5 加速規 8
2-6 資料擷取系統 8
2-7 示波器 9
2-8 工業相機 9
2-9 有限元素法 9
第三章 理論分析 19
3-1 薄平板面外變形之統御方程式與邊界條件 19
3-2 振動分析 20
3-3 暫態分析 27
3-3-1考慮阻尼效應的暫態分析 31
3-4 收斂分析 34
第四章 懸臂板基底運動之動態分析 41
4-1 實驗架構介紹 41
4-1-1衝擊實驗 41
4-1-2克拉尼實驗 41
4-1-3 基底運動實驗 42
4-1-4 阻尼比量測與模擬設定 42
4-2共振頻率之結果討論 45
4-3 振動模態頻域分析 45
4-4考慮阻尼效應暫態分析之結果討論 47
4-4-1 定頻激振 47
4-4-2 掃頻激振 48
4-4-3 脈衝激振 49
第五章 全自由平板基底運動之動態分析與克拉尼圖像探討 79
5-1 實驗系統與架設 79
5-1-1衝擊實驗 79
5-1-2克拉尼實驗 79
5-2共振頻率之結果討論 80
5-3掃頻激振之模態形狀分析 81
5-4顆粒體動態行為之結果討論 82
第六章 結論與未來展望 111
6-1本文成果 111
6-2未來展望 112
參考文獻 113
附錄A: PVDF壓電薄膜 115
附錄B:電荷放大器 116
附錄B :電荷放大器 117
附錄C:三軸加速規 118
參考文獻 [1] Gorman, D. J. "Free vibration analysis of the completely free rectangular plate by the method of superposition" , Journal of Sound and Vibration,Vol 57(3), 1978,pp. 437-447.
[2] TO, C .W. S. "Vibration of a cantilever beam with a base excitation and tip mass", Journal of Sound and Vibration , Vol 83(4), 1982, pp. 445-460.
[3] Aidi, B., Shaat, M., Abdelkefi, A., Case, S., "Free vibration analysis of cantilever open hole composite plates", Meccanica , Vol 52(11), 2017,pp. 2819-2836,.
[4] Huang, M., and Sakiyama, T., "Free vibration analysis of rectangular plates with variously shaped holes", Journal of sound and vibration, Vol 226(4), 1999, pp. 769-786.
[5] Craggs, A. "Transient vibration analysis of linear systems using transition matrices" , NASA ,1968.
[6] Abrate, S. “Transient Response of Beams, Plates, and Shells to Impulsive Loads” , ASME International Mechanical Engineering Congress and Exposition, Vol.43033, 2007,pp.
107-116 .
[7] Mochida, Y. " Free vibration analysis of plates and shells by using the Superposition Method ", University of Waikato. PhD Thesis. 2010.
[8] Pellicano, F. Barbieri, M., Zippo, A., Strozzi, M.,"Experiments on shells under base excitation" ,Journal of Sound and Vibration, Vol 369 ,2016, pp. 209-227.
[9] Tai, W.C., Lei, Z., "On optimization of energy harvesting from base-excited vibration" ,
Journal of Sound and Vibration , Vol 411, 2017, pp. 47-59.
[10] Moraga, G., Xia, X., Roig, S., Valero, C., Valentin,D., Egusquiza, M., Zhou, L., Egusquiza, E.& Presas, A ," Experimental study on the influence of vibration amplitude on the fluid damping of a submerged disk". Journal of Sound and Vibration, Vol 569, 2024 , 118099.
[11] Chladni, E.F.F. Entdeckungen uber Die Theorie des Klanges, Bey Weidmannserben und Reich: Leipzig, Germany, 1787.
[12] Latifi, K. ,Wijaya, H. , Zhou, Q. "Motion of heavy particles on a submerged Chladni plate", Physical Review Letters, Vol 122, 2019, 184301.
[13] Escaler, X., Torre, O.D.L. "Axisymmetric vibrations of a circular Chladni plate in air and
fully submerged in water", Journal of Fluids and Structures, Vol 82, 2018, pp. 432–445.
[14] Jihong, Y., Nian, Q. "Combination of DEM/FEM for progressive collapse simulation of domes under earthquake action", International Journal of Steel Structures, Vol 18,2018,
pp. 305-316.
[15] 吳亦莊、馬劍清:〈理論解析與實驗量測壓電平板的面外振動及特性探討〉。碩士
論文,國立台灣大學機械工程研究所,2009年。
[16] 劉泓嶔、馬劍清:〈PVDF 感測器應用於結構系統之動態量測能力探討〉。碩士論文,國立台灣大學機械工程研究所,2011年。
[17] 廖展誼、馬劍清:〈矩形平板於流固耦合問題的振動特性與暫態波傳之理論分析、數值計算與實驗量測〉。博士論文,國立台灣大學機械工程研究所,2018年。
[18] 何俊頡、馬劍清:〈PVDF 薄膜應用於矩形平板結構的動態響應與波源歷時之數值分析與實驗量測〉。碩士論文,國立台灣大學機械工程研究所,2022年。
[19] 蔡定羽、鍾雲吉、廖展誼:〈以雙向耦合離散元素法與有限元素法模擬顆粒體在矩形板振動下產生的克拉尼圖與反克拉尼圖〉。碩士論文,國立中央大學機械工程研究所,2024年。
[20] 吳竑廷、段必輝:〈共振平板上粒子集成運動之圖樣生成〉。碩士論文,國立中正大學物理研究所,2021年。
指導教授 廖展誼(Chan-Yi-Liao) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明