博碩士論文 111323008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.145.175.141
姓名 呂振瑋(Jen-Wei Leu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 透過質量陣列控制撓曲波傳之理論分析及設計應用
(Theoretical Analysis, Design Methods and Application for Controlling Wave Propagation in Plates through Mass Arrays)
相關論文
★ 應用機器視覺於機械手臂隨機物件夾取 與三維人體姿態偵測★ 矩形平板施加點質量陣列的振動特性與暫態波傳分析與波源歷時反算應用
★ 矩形平板部分埋沒於顆粒體之動態反應與振動特性★ 基底運動引發板結構動態反應之理論分析與實驗量測
★ 以雙向耦合離散元素法與有限元素法模擬顆粒體在矩形板振動下產生的克拉尼圖與反克拉尼圖★ 紅外線光彈技術於矽晶圓應力檢測之開發應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2028-1-20以後開放)
摘要(中) 本文建立理論分析方法,探討板結構受質量效應影響的振動特徵和暫態波傳行為,包含任意外加質量分佈的平板共振頻率與模態形狀差異,以及撓曲波通過質量陣列的傳遞軌跡與能量變化,藉此設計質量透鏡。
理論模型首先推導平板上附加質量陣列的自由振動解析解,以Gorman疊加法求出共振頻率和模態形狀等振動特徵後,藉由模態展開法獲得暫態波傳理論解。振動特徵與暫態波傳的理論分析結果透過有限元素模擬軟體相互比對驗證,理論解析之共振頻率、模態形狀和暫態位移、應變等各種物理量皆十分準確,確定本研究所提出的理論方法可正確有效地分析平板結構附加任意質量的頻域與時域動態行為。基於此理論模型,探討質量陣列的排列分佈對於平板振動特徵及暫態波傳的影響,藉由附加質量陣列改變板結構動態行為的概念,開發平板撓曲波適用之波傳軌跡分析方法,整理撓曲波的群速度與附加質量間的相對關係,藉此控制波速差異改變波傳方向,以便形成特定需求的波傳軌跡,建立其對應的質量陣列。
本文最後也藉此設計方法,依據質量透鏡的波傳目的,計算出可形成特定效果的質量陣列內容,其中包含聚焦、發散與控制波傳方向等,成功實現控制撓曲波能量的目的,對於能量回收、減震等需求將可提供明顯助益。
摘要(英) This thesis establishes a theoretical analysis method to investigate the vibration characteristics and transient wave propagation behavior of plate structures under the influence of mass effects, including the differences in resonant frequencies and mode shapes of plates with arbitrarily added mass distributions, as well as the transmission paths and energy changes of flexural waves passing through mass arrays, thereby achieving the effect of a mass lens.
The theoretical model first derives an analytical solution for the free vibration of a plate with an attached mass array. After obtaining the vibration characteristics such as resonant frequency and mode shape using the Gorman superposition method, the transient wave propagation theoretical solution is obtained through normal mode method. The theoretical analysis results of vibration characteristics and transient wave propagation are verified by comparison with finite element simulation software. The theoretical analysis of resonant frequency, mode shape, transient displacement, strain, and other physical quantities is highly accurate, confirming that the theoretical method proposed in this study can accurately and effectively analyze the frequency domain and time domain dynamic behavior of plate structures with arbitrarily added mass.
Based on this theoretical model, the influence of the arrangement and distribution of the mass array on the vibration characteristics and transient wave propagation of the plate is investigated. By changing the dynamic behavior of the plate structure through the attached mass array, a wave propagation path analysis method applicable to plate flexural waves is developed. The relationship between the group velocity of flexural waves and the added mass is summarized to control the wave velocity difference to change the wave propagation direction, thereby forming a specific required wave propagation path, and establishing its corresponding mass array.
Finally, based on this design method, the content of the mass array that can form a specific effect, including focusing, divergence, and control of wave propagation direction, is calculated, successfully achieving the purpose of controlling the energy of flexural waves, which can provide significant benefits for energy recovery and vibration reduction.
關鍵字(中) ★ 振動
★ 暫態波傳
★ 質量陣列
★ 疊加法
★ 模態展開法
★ 波傳控制
關鍵字(英) ★ Vibration
★ Wave propagation
★ Mass array
★ superposition method
★ Normal mode expansion
★ Wave propagation control
論文目次 摘要 i
Abstract iii
致謝 v
目錄 vii
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1 研究動機 1
1-2 文獻回顧 1
1-3 內容簡介 3
第二章 板結構附加質量陣列之動態分析 5
2-1 理論推導 5
2-1-1 平板面外變形之統御方程式與邊界條件 5
2-1-2 振動分析 6
2-1-3 暫態分析 15
2-2 收斂分析 16
2-3 理論計算、數值模擬與實驗結果之比對驗證 17
2-3-1 比對模型與COMSOL模擬設定 17
2-3-2 振動分析之驗證 18
2-3-3 暫態分析之驗證 18
第三章 質量陣列與撓曲波傳關係之分析方法 35
3-1 撓曲波速度分析 35
3-1-1 撓曲波速度之理論分析 35
3-1-2 撓曲波群速度驗證 36
3-1-3平板附加質量與撓曲波速度之關係 38
3-2 波傳軌跡分析 40
3-2-1波傳軌跡分析方法 40
3-2-2波傳軌跡驗證 42
第四章 質量陣列各項參數對波傳行為的影響與討論 57
4-1 質量變化陣列於波傳聚焦效果之討論 57
4-1-1 聚焦參數 不同之鋼珠陣列 57
4-1-2 鋼珠間隔變化之陣列 59
4-1-3 非固定間格排列 60
4-2 質量變化陣列與其他波傳效果之討論 61
4-3 質量固定陣列於波傳轉向效果之討論 62
第五章 結論與未來展望 81
5-1 本文成果 81
5-2 未來展望 82
參考文獻 83
參考文獻 [1] D. J. Gorman, “Free Vibration Analysis of the Completely Free Rectangular Plate by the Method of Superposition.” Journal of Sound and Vibration, Vol 57(3), 1978, pp. 437-447.
[2] S. D. Yu, “Free and Forced Flexural Vibration Analysis of Cantilever Plates with Attached Point Mass.” Journal of sound and vibration, Vol 321(1-2), 2009, pp. 270-285.
[3] S. Abrate, “Transient Response of Beams, Plates, and Shells to Impulsive Loads.” ASME International Mechanical Engineering Congress and Exposition, Vol 43033, January 2007, pp. 107-116.
[4] S. C. S. Lin, T. J. Huang, J. H. Sun, T. T. Wu, “Gradient-Index Phononic Crystals.” Physical Review B—Condensed Matter and Materials Physics, Vol 79(9), 2009, 094302.
[5] Y. Jin, D. Torrent, Y. Pennec, Y. Pan, B. Djafari-Rouhani, “Simultaneous Control of the S and A Lamb Modes by Graded Phononic Crystal Plates.” Journal of Applied Physics, Vol 117(24), 2015.
[6] J. Zhao, B. Bonello, R. Marchal, O. Boyko, “Beam Path and Focusing of Flexural Lamb Waves within Phononic Crystal-Based Acoustic Lenses.” New Journal of Physics, Vol 16(6), 2014, 063031.
[7] Y. Ruan, X. Liang, “Reflective Elastic Metasurface for Flexural Wave Based on Surface Impedance Model.” International Journal of Mechanical Sciences, Vol 212, 2021, 106859.
[8] K. C. Chuang, D. F. Wang, J. J. Liu, C. Y. Liao, “Linking Time-Domain Vibration Behaviors to Spatial-Domain Propagating Waves in a Leaf-like Gradient-Index Phononic Crystal Lens.” Crystals, Vol 11(12), 2021, 1490.
[9] D. F. Wang, K. C. Chuang, J. J. Liu, C. Y. Liao, “Modeling Full-Field Transient Flexural Waves on Damaged Plates with Arbitrary Excitations Using Temporal Vibration Characteristics.” Sensors, Vol 22(16), 2022, 5958.
[10] S. H. Kim, “Analytic Solution of the Generalized Eaton Lens.” Journal of Modern Optics, Vol 68(3), 2021, pp. 143-145.
[11] A. Climente, D. Torrent, J. Sanchez-Dehesa, “Gradient Index Lenses for Flexural Waves Based on Thickness Variations.” Applied Physics Letters, Vol 105(6), 2014.
[12] A. Zareei, A. Darabi, M. J. Leamy, M. R. Alam, “Continuous Profile Flexural GRIN Lens: Focusing and Harvesting Flexural Waves.” Applied Physics Letters, Vol 112(2), 2018.
[13] W. Huang, H. Ji, J. Qiu, L. Cheng, “Analysis of Ray Trajectories of Flexural Waves Propagating over Generalized Acoustic Black Hole Indentations.” Journal of Sound and Vibration, Vol 417, 2018, pp. 216-226.
[14] J. H. Chen, I. C. Chao, T. Chen, “Bandgaps for Flexural Waves in Infinite Beams and Plates with a Periodic Array of Resonators.” Journal of Mechanics, Vol 38, 2022, pp. 376-389.
[15] M. ?arbort, T. Tyc, “Spherical Media and Geodesic Lenses in Geometrical Optics.” Journal of Optics, Vol 14(7), 2012, 075705.
[16] 林沛熹、廖展誼:〈矩形平板施加點質量陣列的振動特性與暫態波傳分析與波源歷時反算應用〉。碩士論文,國立中央大學機械工程研究所,2022年。
[17] D. F. Wang, Y. H. Wang, K. C. Chuang, “Nearly-Isotropic Adjustable Phononic Crystal Lenses Using Concentrated Balls with Hertz Contacts.” Physics Letters A, Vol 396, 2021, 127240.
[18] V. Giurgiutiu, Structural health monitoring: with piezoelectric wafer active sensors. United States: Academic Press, 2007.
指導教授 廖展誼(Chan-Yi Liao) 審核日期 2025-1-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明