博碩士論文 111323004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:15 、訪客IP:3.12.104.80
姓名 吳承彥(Chang-Yen Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 靜電感應電化學加工法於哈氏合金內管壁拋光特性之研究
(Study on the Polishing Characteristics of the Inner Wall of Hastelloy Tubes Using Electrostatic Induction Electrochemical Machining)
相關論文
★ 混氣放電線切割加工 N-Type 單晶碳化矽之研究★ 鎳鈦記憶合金電極應用於不鏽鋼彎管內表面電化學拋光之研究
★ 微細片狀電極結合超音波輔助電化學放電加工於石英玻璃加工微槽之研究★ 磁場輔助電化學加工法於不銹鋼陣列微孔拋光之研究
★ 6吋碳化矽晶圓碇之線放電加工參數優化與粒子追蹤模擬分析★ 以電解混氣法輔助微電化學高深徑比鑽孔加工之研究
★ 深切緩進電化學放電加工於石英玻璃之創成特性研究★ 機械手臂輔助電解複合研磨系統應用於積層製造鈦合金葉片拋光
★ 高深徑比微細孔電化學加工 多重物理量耦合模擬之研究★ 混氣電解電漿拋光法於不銹鋼管內表面品質改善之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-2-17以後開放)
摘要(中) 哈氏合金是一種具有高強度和耐腐蝕性的金屬材料,廣泛應用於航空、航太、能源和汽車工業等領域。然而,哈氏合金的表面粗糙度常常需要進行進一步的處理,以滿足特定的應用要求。
電解拋光(Electropolishing, EP)是一種利用電化學反應移除材料表面微小凸起的加工方法,能有效改善表面光滑度與減少粗糙度。然而,EP過程中材料移除量較大,對薄壁結構的加工可能導致壁厚過薄的風險。相比之下,靜電感應電化學加工法(Electrostatic Induction Electrochemical Machining, EIECM)是一種新穎的加工技術,通過靜電場輔助進一步最佳化電化學反應,實現均勻的材料移除與更小的材料損耗。這兩種電化學加工方法均能有效提升哈氏合金的表面品質,同時避免了傳統加工方法中的高機械應力及熱影響,適用於要求高精度與高表面品質的應用。因此,本研究欲探討這兩種加工法的差異性與優劣勢,從中提供精密加工有效的解決方案。
本研究探討靜電感應電化學加工法在哈氏合金內管壁拋光中的應用特性。相比於EP,EIECM能有效控制材料移除量,並且達到內管壁的拋光,同時減少材料損耗。研究重點包括加工參數如電壓、加工時間、電解液流速、電解液溫度,對表面粗糙度、材料移除率、粗糙度均勻性和鈍化層厚度的影響,並通過實驗測試評估不同條件下的拋光效果。結果顯示,EIECM與EP均能顯著的改善內管壁的表面品質,有效的改善表面粗糙度,而EIECM的材料保留特性優於EP。此方法在薄壁結構加工中表現出更高的加工均勻性與經濟性,適用於高性能合金材料的內壁拋光。
摘要(英) Hastelloy is a metal material with high strength and excellent corrosion resistance, widely used in aerospace, energy, and automotive industries. However, the surface roughness of Hastelloy often requires further treatment to meet specific application requirements.

Electropolishing (EP) is a chemical reaction-based process that removes surface asperities, effectively improving surface smoothness and reducing roughness. However, during the EP process, significant material removal may occur, posing risks of excessive thinning for thin-walled structures. In contrast, Electrostatic Induction Electrochemical Machining (EIECM) is an innovative technique that utilizes electrostatic fields to optimize electrochemical reactions, achieving uniform material removal with lower material loss. Both methods enhance the surface quality of Hastelloy effectively while avoiding the high mechanical stress and thermal effects associated with conventional processing methods, making them suitable for applications requiring high precision and surface quality. This study aims to explore the differences, advantages, and disadvantages of these two electrochemical processing methods, providing effective solutions for precision machining.

This research investigates the application characteristics of EIECM in polishing the inner walls of Hastelloy tubes. Compared to EP, EIECM can effectively control material removal, achieve inner wall polishing, and reduce material loss. The study focuses on processing parameters such as voltage, processing time, electrolyte flow rate, and electrolyte temperature, analyzing their effects on surface roughness, material removal rate, roughness uniformity, and passivation layer thickness. Experimental evaluations under various conditions reveal that both EIECM and EP significantly improve the surface quality of inner tube walls, effectively reducing surface roughness. However, EIECM demonstrates superior material retention properties compared to EP. This method shows higher processing uniformity and cost-effectiveness in thin-walled structure machining, making it well-suited for polishing the inner walls of high-performance alloy materials.
關鍵字(中) ★ 靜電感應電化學加工法
★ 電解拋光
★ 內孔拋光
★ 鈍化
★ 表面粗糙度
★ 哈氏合金
關鍵字(英) ★ Electrostatic Induction Electrochemical Machining
★ Electrolytic polishing
★ Internal hole polishing
★ Passivation
★ Surface Roughness
★ Hastelloy
論文目次 摘要 I
ABSTRACT III
致謝 V
目錄 VI
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 2
1-3 文獻回顧 3
1-4 論文架構 10
第二章 實驗基礎理論 11
2-1 電化學加工的基礎理論 11
2-1-1 法拉第定律 11
2-1-2 歐姆定律 12
2-2 電解拋光的基礎理論 12
2-3 靜電感應電化學加工的基礎理論 14
2-3-1 靜電感應電化學基本原理 14
2-3-2 電流密度與材料移除速率 17
2-3-3 電解液的作用 18
2-4 電解拋光與靜電感應電化學之加工特性 18
第三章 實驗設備與實驗方法 20
3-1 基礎實驗相關設備 20
3-2 實驗材料 28
3-3 實驗流程與方法 31
第4章 第四章 結果與討論 39
4-1 極化曲線之量測 39
4-2 不同加工參數對電解拋光加工特性之影響 40
4-2-1 電解拋光加工特性與加工時間關係 41
4-2-1-1 EP之加工時間對表面形貌影響 41
4-2-1-2 EP之加工時間對粗糙度影響 43
4-2-1-3 EP之加工時間對壁厚影響 45
4-2-2 電解拋光加工特性與加工電壓關係 46
4-2-2-1 EP之加工電壓對表面形貌影響 47
4-2-2-2 EP之加工電壓對粗糙度影響 48
4-2-2-3 EP之加工電壓對壁厚影響 49
4-2-3 電解拋光加工特性與電解液溫度之關係 50
4-2-3-1 EP之電解液溫度對表面形貌影響 51
4-2-3-2 EP之電解液溫度對粗糙度影響 52
4-2-3-3 EP之電解液溫度對壁厚影響 53
4-2-4 電解拋光加工特性與電解液流速之關係 54
4-2-4-1 EP之電解液流速對表面形貌影響 54
4-2-4-2 EP之電解液流速對粗糙度影響 56
4-2-4-3 EP之電解液流速對壁厚影響 58
4-3 靜電感應電化學加工特性與不同加工參數之影響 61
4-3-1 靜電感應電化學加工特性與加工時間之關係 61
4-3-1-1 EIECM之加工時間對表面形貌影響 61
4-3-1-2 EIECM之加工時間對粗糙度影響 64
4-3-1-3 EIECM之加工時間對壁厚影響 65
4-3-2 靜電感應電化學加工特性與加工電壓之關係 66
4-3-2-1 EIECM之加工電壓對表面形貌影響 67
4-3-2-2 EIECM之加工電壓對粗糙度影響 68
4-3-2-3 EIECM之加工電壓對壁厚影響 69
4-3-3 靜電感應電化學加工特性與電解液溫度之關係 70
4-3-3-1 EIECM之電解液溫度對表面形貌影響 71
4-3-3-2 EIECM之電解液溫度對粗糙度影響 72
4-3-3-3 EIECM之電解液溫度對壁厚影響 73
4-3-4 靜電感應電化學加工特性與電解液流速之關係 74
4-3-4-1 EIECM之電解液流速對表面形貌影響 74
4-3-4-2 EIECM之電解液流速對粗糙度影響 76
4-3-4-3 EIECM之電解液流速對壁厚影響 77
4-4 靜電感應電化學加工與電解拋光之比較 78
4-4-1 表面形貌的差異 78
4-4-2 表面均勻度的差異 91
4-4-3 鈍化層厚度比較 92
4-4-4 壁厚之比較 95
第五章 結論 98
未來展望 100
參考文獻 101
參考文獻 1. Kassim A. S., ThorA. J., SemanA. A., & Abdullah K. T. (2020). High temperature corrosion of Hastelloy C22 in molten alkali salts: The effect of pre-oxidation treatment. Corrosion Science, 108761.
2. Wang Q. Y., Bai S. L., ZhaoY. H., & LiuZ. D. (2014). Effect of mechanical polishing on corrosion behavior of Hastelloy C22 coating prepared by high power diode laser cladding. Applied Surface Science, 312-318.
3. Dansana B., Mahapatra R. T., Sahu P., & Sahu K. S. (2020). Tribological and electrochemical corrosion performance analysis of Hastelloy C276 under different loading conditions. Materials Today, 1434-1441.
4. Feng F., Zhang X. S. , Qu T. M., Zhang Y. Y., Qian X., Liu B. B. ,Feng P. F. (2018). Scaling analysis of the current inuence on Hastelloy surface roughness in electro polishing process. Rare Metals, 142-150.
5. Feng F., Shi K., Xiao S. Z., Zhao Z. J. , ZhangY. Y., Zhao Z. J., Han Z. N. (2012). Fractal analysis and atomic force microscopy measurements of surface roughness for Hastelloy C276 substrates and amorphous alumina buffer layers in coated conductors. Applied Surface Science, 3502–3508.
6. Hao S. P., Wang Y., Suo H. L., Jia Q., Liu M., & Ma L. (2018). Continuous electropolishing technique for long-length Hastelloy C-276 tape. Rare Metals, 795–802.
7. Lloyd A. C., Noel J. J., McIntyre S., & Shoesmith D. W. (2004). Cr, Mo and Walloying additions in Ni and their effect on passivity. Electrochimica Acta, 3015-3027.
8. Nowicki R., ?wiercz R., ?wiercz O. D., & Rozenek M. (2022). Experimental Investigation of Technological Indicators and Surface Roughness of Hastelloy C-22 after Electrical Discharge Machining Using POCO Graphite Electrodes. Materials, 5631.
9. Samson M. R., Raj A., Geethapriyan T., Senkathir S., & Muthiya S. (2018). Optimization of Machining Parameters on Electrochemical Micro Machining of Hastelloy C22 using Grey Taguchi Method. International Journal of Vehicle Structures and Systems,108-114.
10. Surekar H. S., Bhatwadekar S., & Bilgi S. D. (2014). Analysis of electrochemical machining process parameters affecting material removal rate of hastelloy C-276. Materials Science, 18-23
11. Wang Y., Wang P., Suo H., Jia Q., Lu D., Li H., & Wu H. (2017). Study on electropolishing of hastelloy C-276 alloy. Materials Reports, 37-40.
12. Yadidya M. D., & Leo K. S. P. (2021). Experimental Analysis on Electrochemical Machining of Hastealloy Material. Proceedings of the First International Conference on Combinatorial and Optimization, 2315109.
13. Yang X. C., Du L. Q., Li A. Q., Wu M. X., Wu C. h. , & Li J. M. (2024). A novel method of induction electrode through-mask electrochemical micromachining. International Journal of Machine Tools and Manufacture, 104221.
14. Zhang X. Y., Zhong J., Guo S. L., & Zhao J. (2021). Control of deformation and annealing process to produce incoherent Σ3. Nuclear Materials and Energy,100944.
15. Zheng C., Liu Z. D., Liu Q. B., Li Y., & Liu C. (2022). Comparative investigation on corrosion behavior of laser cladding C22 coating, Hastelloy C22 alloy and Ti–6Al–4V alloy in simulated desulfurized flue gas condensates. Journal of Materials Research and Technology, 2194-2207.
16. Derui J., Yang T., Yuman Z., Aijun H. (2022). Investigation of surface roughness post-processing of additively manufactured nickel-based superalloy Hastelloy X using electropolishing. Surface and Coatings Technology, 128529.
17. Sascha K., Paul N. A., Lawrence E. B., Steve R. F. & Vladimir M. (2003). Continuous electropolishing of Hastelloysubstrates for ion-beam assisted deposition of MgO. Superconductor Science and Technology, 613-616.
18. Tadeusz H., Krzysztof R. (2014). Highlights of Magnetoelectropolishing. Volume 1, Article 00003, DOI: 10.3389/fmats.2014.00003.
19. Li X., Ogle K. (2019). The Passivation of Ni-Cr-Mo Alloys: Time Resolved Enrichment and Dissolution of Cr and Mo during Passive-Active Cycles. Journal of The Electrochemical Society, 3179-3185.
指導教授 洪榮洲(Jung-Chou Hung,) 審核日期 2025-2-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明