參考文獻 |
莊雲翰, 2002, “結合影像區塊及知識庫分類之研究—以IKONOS衛星影像為例”,碩士論文, 國立中央大學土木工程學系研究所
王文俊 編著, 認識Fuzzy, 全華科技圖書, 1986
唐德誠, 2002, “灰度共現矩陣於多波段多極化SAR影像分類之研究”, 碩士論文, 國防大學中正理工學院軍事工程研究所
莊家和, 2002, “紋路特徵編碼法於紋路分析之研究”, 碩士論文, 南華大學資訊管理學系碩士班
Antunes, A., Lingnau, C., and Silva, J.C., 2003, “Object oriented analysis and semantic network for high resolution image classification”, Anais XI SBSR, Belo Horizonte, Brasil, 05-10 abril 2003, INPE, pp. 273-279.
Baatz, M., and Schape, A., 2000, “Multiresolution Segmentation – an optimization approach for high quality multi-scale image segmentation”, Angewandte Geographische Informationsverarbeitung XII, Beitrage zum AGIT-Symposium Salzburg 2000, Karlsruhe, Herbert Wichmann Verlag : 12-23.
Cheng, S.-C., 2003, “Region-growing approach to colour segmentation using 3D clustering and relaxation labelling”, Vision, Image and Signal Processing, vol. 150, pp.270-276.
Darwish, A., Leukert, K., and Rrinhardt, W., 2003, “Image Segmentation for the Purpose of Object-Based Classification”, Proceedings of IGARSS 2003 IEEE, July 2003, Toulouse.
DEFINIENS, eCognition object oriented image analysis, User Guide 3
http://www.definiens-imaging.com/index.htm
Ester, M., Kriegel, H.-P., Sander, J., and Xu, X., 1996, “A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases With Noise”, Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining.
Haralick, R., and Shapiro, L., 1985, “Survey : image Segmentation Techniques”, Computer Vision, Graphics, and Image Processing, vol. 29, pp. 100-132.
Hofmann, P., 2001, “Detecting urban features from IKONOS data using an object-oriented approach”, Remote Sensing and Photogrammetry Society(Editor): Proceedings of the First Annual Conference of the Remote Sensing and Photogrammetry Society 12-12 September 2001, 28-33.
Lillesand, T.M. and Kiefer, R.W., 1999, Remote Sensing and Image Interpretation, 4th Ed., John Wiley and Sons, Inc.: Toronto
Marceau, J., Howarth, J., and Dubois, M., 1990, ”Evaluation of the Grey-Level Co-Occurrence Matrix Method For Land-Cover Classification Using SPOT Imagery”, IEEE Trans. Geosci. Remote Sensing, vol. 28, no. 4, pp. 513-519.
Pekkarinen, A., 2002, “A method for the segmentation of very high resolution images of forested landscapes”, International Journal of Remote Sensing, vol. 23, no. 14, pp. 2817-2836.
Pathak, V., and Dikshit, O., 2003, “Segment based classification using IRS-1C, LISS-III data”, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, vol. 6, pp. 3513-3515.
Richards, J., and Jia, X., 1999, “Remote Sensing Digital Image Analysis : an introduction”, Speinger-Verlag Berlin Heidelberg New York.
Sappa, A.D., and Devy, M., 2001, “Fast Range Image Segmentation by an Edge Detection Strategy”, IEEE 3rd International Conference on 3-D Digital Imaging and Modeling, Quebec City, Canada.
Shafarenko, L., Petrou, M., and Kittler, J., 1997, “Automatic watershed segmentation of randomly textured color images”, IEEE Trans. Image Processing, vol. 6, no. 11, pp. 1530-1543.
Song, M., and Civco, D.L., 2002, “A knowledge-based approach for reducing cloud and shadow”, Proc. 2002 ASPRS Annual Convention, Washington, D.C., 7p.
Sander, J., Ester, M., Kriegel, H.-P., and Xu, X., 1998, “Density-Based Clustering in Spatial Databases : The Algorithm GDBSCAN and its Application”, Data Mining and Knowledge Discovery, vol. 2, pp. 169-194.
Tuduki, Y., Murase, K., Izumida, M., Miki, H., Kikuchi, K., Murakami, K., and Ikezoe, J., 2000, “Automated seeded region growing algorithm for extraction of cerebral blood vessels from magnetic resonance angiographic data”, Engineering in Medicine and Biology Society, vol. 3, pp. 1756-1759.
Ye, Q., Gao, W., and Zeng, W., 2003, ”Color Image Segmentation Using Density-Based Clustering”, Proceedings of IEEE International Conference on Acoustics, Speech, & Signal Processing, April 6-10. |