參考文獻 |
[1] Zbigniew Michalewicz, Genetic algorithms + data structures = evolution programs, Berlin, New York, Springer-Verlag, 1992.
[2] Thomas Bäck, Evolutionary Algorithms in Theory and Practice, New York: Oxford university press, 1996.
[3] Mitsuo Gen, and Runwei Cheng, Genetic algorithms and engineering design, New York: Wiley, 1997.
[4] James Edward Smith, “Self adaptation in evolutionary algorithms,” Ph.D. dissertation, Dept. of Computer Studies and Mathematics, University of the West of England, Bristol, July 1998.
[5] H.-G. Beyer, The Theory of Evolution Strategies, Berlin, Germany: Springer-Verlag, 2001.
[6] Xiaofeng Qi, and F. Palmieri, “Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space. Part I: Basic properties of selection and mutation,“ Neural Networks, IEEE Transactions on, vol. 5, issue 1, pp. 102-119, Jan. 1994.
[7] Xiaofeng Qi, and F. Palmieri, “Theoretical analysis of evolutionary algorithms with an infinite population size in continuous space. Part II: Analysis of the diversification role of crossover,“ Neural Networks, IEEE Transactions on, vol. 5, issue 1, pp. 120-129, Jan. 1994.
[8] Thomas Bäck, “Generalized Convergence Models for Tournament- and -Selection,” Proceedings of the 6th International Conference on Genetic Algorithms, pp. 2-8, 1995.
[9] Adam Prügel-Bennett, ”Modeling Evolving Populations,” Journal of Theoretical Biology, pp. 81-95, 1997.
[10] P. Power; F. Sweeney; C.F.N. Cowan, “EA crossover schemes for a MLP channel equalizer, ” Electronics, Circuits and Systems, Proceedings of ICECS '99, the 6th IEEE International Conference on, vol. 1, Sept. 1999, pp. 407-410.
[11] H.-G. Beyer, “On the Dynamics of EAs without Selection,” Foundations of Genetic Algorithms, 1999, pp. 5-26.
[12] A. Rogers, and A. Prugel-Bennett, “Genetic drift in genetic algorithm selection schemes,” IEEE Trans on Evolutionary computation, vol. 3, no. 4, pp. 298-303, Nov. 1999
[13] H.-G. Beyer, and K. Deb, ”On Self-Adaptive Feature in Real- Parameter Evolutionary Algorithms ”, IEEE Trans. Evolutionary computation, vol.5, no. 3, pp. 250-270, June 2001.
[14] H.-G. Beyer, ”On the Performance of -Evolution Strategies for the Ridge Function Class,” IEEE Transactions on Evolutionary Computation, vol. 5, no 3, pp.218-235, 2001.
[15] H.-G. Beyer, and K. Deb, ”On Self-Adaptive Features in Real-Parameter Evolutionary Algorithms,” IEEE Transactions on Evolutionary Computation, vol. 5, no. 3, pp. 250-270, 2001.
[16] D. V. Arnold, and H.-G. Beyer, ”Local Performance of the (1+1)-ES in a Noisy Environment,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 1, pp. 30-41, 2002.
[17] Ronald E. Crochiere, and Lawrence R. Rabiner, Multirate Digital Signal Processing, Prentice-Hall, 1983
[18] John G. Proakis, Digital communications, New York: McGraw-Hill, 1989.
[19] Wu-Sheng Lu and Andreas Antoniou, Two-Dimensional Digital Filters, Marcel dekker 1992.
[20] Emmanuel C. Ifeachor, and Barrie W. Jervis, Digital signal processing: A practical approach, Addison-Wesley. 1993.
[21] P. P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, 1993.
[22] N. J. Fliege, Multirate Digital Signal Processing, John Wiley, 1994.
[23] Sophocles J. Orfanidis, Introduction to signal processing, Prentice Hall, 1996.
[24] Boaz Porat, A course in digital signal processing, Wiley, 1997.
[25] V. K. Ingle, and J. G. Proakis, Digital Signal Processing-Using MATLAB V.4, PWS Publishing, 1997.
[26] Paul A. Lynn, and Wolfgang Fuerst, Introduction to signal processing: with computer applications, Wiley, 1998.
[27] Frederic J. Harris, Multirate signal processing for communication systems, Upper Saddle River, N.J. : Prentice Hall PTR, 2004.
[28] J.-R.Ohm, Multimedia communication technology: representation, transmission, and identification of multimedia signals, Berlin; New York: Springer, 2004.
[29] N. Benvenuto, M. Marchesi, and A. Uncini, “Applications of simulated annealing for the design of special digital filters,” IEEE Trans. Signal Processing, vol. 40, pp. 323–332, Feb. 1992.
[30] Kit-sang Tang, Kim-fung Man, and Sam Kwong, “Design and Optimization of IIR Filter Structure Using Hierarchical Genetic Algorithms,” IEEE Trans. Industrial electronics, vol. 45, no. 3, pp. 481-487, June 1998.
[31] Jui-Chung Hung, and Bor-Sen Chen, “Genetic Algorithm Approach to Fixed-Order Mixed Optimal Deconvolution Filter Designs,” IEEE Trans on signal processing, vol. 48, no. 12, Dec. 2000.
[32] Chien-Min Lee, and Chia-Lu Ho, "Optimal digital filters by evolutionary search approach," 2003 Conference on electronic communication and applications, pp.151-156, Penghu, Taiwan, May 2003.
[33] M. Donadio, “Lost Knowledge Refound: Sharpened FIR Filters,” Signal Processing Magazine, IEEE, vol. 20, issue 5, pp. 61-63, Sep. 2003.
[34] Chien-Min Lee, and Chia-Lu Ho, "Design the Discrete valued IIR filters with Minimum Phase by using Evolutionary Algorithm," The Ninth Conference on Artificial Intelligence and Applications, Taiwan, Nov. 2004.
[35] Soo-Chang Pei, and Jong-Jy Shyu, “2-D FIR Eigenfilters: A Least-Squares Approach,” IEEE Trans. Circuit and systems, vol.37, no.1, Jan. 1990.
[36] D. B. H. Tay, and N. G. Kingsbury, “Flexible design of multidimensional perfect reconstruction FIR 2-band filters using transformations of variables,” Image Processing, IEEE Transactions on, vol. 2, issue 4, pp. 466-480, Oct. 1993.
[37] A. G. Deczky, “Synthesis of recursive digital filters using the minimum p-error criterion,” IEEE Trans. Audio and Electroacoustic, vol. AU-20, pp. 257-263, Oct. 1972.
[38] J. L. Sullivan, and J.W. Adams, “PCLS IIR digital filters with simultaneous frequency response magnitude and group delay specifications,” Signal Processing, IEEE Transactions on. vol. 46, no. 11, pp. 2853-2861, Nov. 1998.
[39] Luowen Li, Lihua Xie, Wei-Yong Yan, and Yeng-Chai Soh, “Design of low-order linear-phase IIR filters via orthogonal projection,” Signal Processing, IEEE Transactions on, vol. 47, no. 2, pp. 448-457, Feb. 1999.
[40] R.W. Aldhaheri, “Design of linear-phase IIR digital filters using singular perturbational model reduction”, Vision, Image and Signal Processing, IEE Proceedings- , vol. 147, issue: 5, pp.409-414, Oct. 2000.
[41] M. Abo-Zahhad, and S.M. Ahmed, “Design of IIR filters with simultaneous amplitude and group-delay characteristics using genetic algorithm,” Proceedings of the 2003 10th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2003, vol.3, Dec.2003, pp.1148-1151.
[42] A. Kurosu, S. Miyase, S. Tomiyama, and T. Takebe, “A Technique to Truncate IIR Filter Impulse Response and Its Application to Real-Time Implementation of Linear-Phase IIR Filters,” IEEE Trans on Signal Processing, vol. 51, no. 5, pp.1284-1292, May 2003.
[43] Lee Chien-Min, and Ho Chia-Lu, "Design the IIR Filter with phase and magnitude specifications ," 2004 Conference on electronic communication and applications, Taiwan, May 2004.
[44] Chien-Min Lee, and Chia-Lu Ho, "Designing the IIR Digital Filter with Phase and Magnitude Specifications by EA," International Journal of Electrical Engineering, vol.12, no.2, pp. 207-214, Aug, 2005.
[45] Y. C. Lim, and S. R. Parker, “FIR filter design over a discrete power-of two coefficient space,” IEEE Trans. Acoust. Speech, signal Processing, vol. ASSP-31, pp. 583-591, June 1983.
[46] Yong Lim, and S. Parker, ”Discrete coefficient FIR digital filter design based upon LMS criteria,” IEEE Trans. Circuit Syst., vol. CAS-30, pp. 723-739, Oct. 1983.
[47] K. Nakayama, “A discrete optimization method for higher-order FIR filters with finite wordlength coefficients,” IEEE Trans. Acoust. Speech, Signal Processing, vol. ASSP-35, pp. 1215–1217, Aug. 1987.
[48] B. Jaumard, M. Minoux, and P. Siohan, “Finite precision design of FIR digital filters using a convexity property,” IEEE Trans. Acoust. Speech, signal Processing, vol. 36, pp. 407-411, Mar. 1988.
[49] Q. Zhao, and Y. Tadokoro, “A simple design of FIR filters with power of-two coefficients,” IEEE Trans. Circuits Syst., vol. 35, pp. 566–570, May 1988.
[50] Y. C. Lim, and B. Liu, “Design of cascade form FIR filters with discrete value coefficients,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 36, pp. 1735-1739, Nov. 1988.
[51] H. Samueli, “An improved search algorithm for the design of multiplierless FIR filters with power-of-two coefficients,” IEEE Trans. Circuits Syst., vol. 36, pp. 1044–1047, July 1989.
[52] Y. C. Lim, “Design of discrete-coefficient-calue linear phase FIR filters with optimum normalized peak ripple magnitude,” IEEE Circuits Syst., vol. 37, pp. 1480-1486, Dec. 1990.
[53] R. Cemes, and D. Ait-Boudaoud, “Genetic approach to design of multiplierless FIR filters,” IEE Electronics Letters, vol. 29, Issue: 24, Nov. 1993.
[54] P. Gentili, F. Biazza, and A. Uncini, “Evolutionary design of FIR digital filters with power-of-two coefficients, “ Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings of the First IEEE Conference on, 27-29, vol.1, June 1994, pp. 110-114.
[55] S. S. Rao, and A. Ramasubrahmanyan, “Design of discrete coefficient FIR filters by simulated evolution,” IEEE Signal Processing Letters. vol. 3, no. 5, pp. 137-140, May 1996.
[56] Hyuk Jun Oh, Woo Jin Oh, Yong Hoon Lee, “Design of cascade-form IIR filters with powers-of-two coefficients using mixed integer linear programming”, ISCAS '96 , vol. 2, May 1996, pp. 221-224.
[57] Chao-Liang Chen, and A. N. Willson Jr., “A Trellis Search Algorithm for the Design of FIR Filters with Signed-Powers-of-Two Coefficients,” IEEE Trans on Circuits and Systems II, vol. 46, no. 1, pp. 29-37, Jan. 1999.
[58] Yong Ching Lim, Rui Yang, Dongning Li, and Jianjian Song, “Signed Power-of-Two Term Allocation Scheme for the Design of Digital Filters,” IEEE Trans. Circuit and system II, vol. 46, no. 5, pp. 577-584, May 1999.
[59] H.H. Dam, S. Nordebo, K.L. Teo, and A. Cantoni, “FIR filter design over discrete coefficients and least square error,” Vision, Image and Signal Processing, IEE Proceedings-, vol. 147, issue 6, pp.543-548, Dec. 2000.
[60] R. Thamvichai, T. Bose, and R. L. Haupt, “Design of 2-D multiplierless IIR filters using the genetic algorithm,” IEEE Trans on circuits and systems I, vol. 49, no. 6, June 2002.
[61] R. Thamvichai, T. Bose, and R. L. Haupt,” Design of 2-D multiplierless IIR filters using the genetic algorithm”, Circuits and Systems I, IEEE Trans. on, Vol. 49, issue: 6, pp. 878–882, June 2002
[62] Yong Ching Lim, Y. Sun, and Yu Ya Jun, “Design of Discrete-Coefficient FIR Filters on Loosely Connected Parallel Machines”, IEEE Trans on signal processing, vol. 50, no. 6, June 2002.
[63] Dongning Li, Yong Ching Lim, Yong Lian, and Jianjian Song, “A Polynomial- Time Algorithm for Designing FIR Filters With Power-of-Two Coefficients,” IEEE Trans. Signal Processing, Vol. 50, No.8, pp. 1935-1941, August 2002.
[64] S. C. Chan, and P. M. Yiu, “An Efficient Multiplierless Approximation of the Fast Fourier Transform Using Sum-of-Powers-of-Two (SOPOT) Coefficients,” IEEE Signal Processing Letters, vol. 9, no. 10, Oct. 2002.
[65] Liang Li; M. Ahmadi, M. Sid-Ahmed, and K. Wallus, “Design of canonical signed digit IIR filters using genetic algorithm”, The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, vol. 2, Nov. 2003, pp.2043-2047.
[66] Chien-Min Lee, and Chia-Lu Ho, "Design of Cascade Form FIR Filters with SPT-AS coefficients by Group search approach," International Journal of Electrical Engineering, vol.13, no.3, pp. 305-312, May 2005.
[67] J. Yli-Kaakinen, T. Saramaki, “An Algorithm for the Design of Multiplierless Approximately Linear-Phase Lattice Wave Digital Filters,” IEEE Proc. ISCAS2000, May, 2000, pp. 77-80.
[68] J. D. Johnston, “A filter family designed for use in quadrature mirror filter banks,” IEEE In Proc. Of Int’l Conf. on ASSP, 1980, pp. 291-294.
[69] P. P. Vaidyanathan, and P.-Q. Hoang, “Lattice structures for optimal design and robust implementation of two-channel perfect-reconstruction QMF banks,” IEEE Acoustics, Speech, and Signal Processing, vol. 36, no. 1, pp. 81-94, Jan. 1988.
[70] B.-R.Horng, and A.N. Willson Jr., “Lagrange multiplier approaches to the design of two-channel perfect-reconstruction linear-phase FIR filter banks,” Signal Processing, IEEE Transactions on, vol. 40, issue 2, pp. 364-374, Feb. 1992.
[71] S. Sriranganathan, D. R. Bull, and D. W. Redmill, “The design of Low Complexity Two-Channel Lattice-Structure Perfect-Reconstruction Filter Banks Using Genetic Algorithm”. Proc. ISCAS97, vol.4, pp.2393-2396.
[72] Yuan-Pei Lin, P. P. Vaidyanathan, “A Kaiser window approach for the design of prototype filters of cosine modulated filter banks,” Signal Processing Letters, IEEE, vol. 5, no. 6, pp.132-134, June 1998.
[73] Chee-Kiang Goh, and Yang Ching Lim, ”An Efficient Algorithm to Design Weighted Minmax Perfect Reconstruction Quadrature Mirror Filter Banks”, IEEE Trans. Signal Processing, vol. 47, no.12, Dec. 1999.
[74] Yong Ching Lim, and Ya Jun Yu, “A width-recursive depth-first tree search approach for the design of discrete coefficient perfect reconstruction lattice filter bank,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol. 50, no. 6, pp. 257-266, June 2003.
[75] Chien-Min Lee, and Chia-Lu Ho, "Design the QMF bank with discrete valued coefficients," 2004 Workshop on consumer Electronics and Signal Processing, Taiwan, Nov. 2004.
[76] Iowegian International Corporation (dspGuru), Digital Signal Processing Central, http://www.dspguru.com/index.htm, 2004.
[77] Julius O. Smith III, Introduction to Digital Filters: with Audio Applications, http://ccrma-www.stanford.edu/~jos/filters/, May 2004.
[78] W. E. Higgins, and D. C. Munson, “Infinite impulse response digital filter design,” Handbook for Digital Signal Processing, S. K. Mitra and J. F. Kaiser, Eds. New York: Wiley, 1993, ch. 5.
[79] A. V. Oppenheim, and R. W. Schafer, Discrete-Time Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1989.
[80] L. Fogel, A. Owens, and M. Walsh, Artificial intelligence through simulated evolution, John Wiley, 1966.
[81] H.-P. Schwefel, Numerical optimization of computer models. John Wiley and Sons, 1981. |