博碩士論文 91521002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.23.103.216
姓名 謝志宏(Vincent Sie)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 矽鍺0.18μm異質接面雙極性電晶體VBIC模型之研究
(The Study of VBIC model for 0.18μm Silicon Germanium Hetero-junction Bipolar Transistor)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
當傳統雙載子電晶體在基極中注入鍺而形成矽鍺薄膜,成功製造出矽鍺異質接面電晶體,其性能將比起傳統的矽電晶體優越許多。在論文中將介紹矽鍺異質接面電晶體與傳統矽電晶體的差異,比較其基本電流操作的特性。本論文將針對VBIC模型應用在tsmc SiGe 0.18μm,高功率元件(HV)模型的參數萃取以及建立,其射極面積為0.6x10.16μm2。
在電路設計上,傳統雙載子電晶體的模型以SPICE Gummel Poon模型為主,至今已經超過二十年以上。然而,對於先進製程而言,SPICE Gummel Poon所模擬的結果無法包含現今小尺寸電晶體元件所有的效應,有鑒於此,新的模型相繼被發表,分別有VBIC,Mextram以及HICUM等模型,企圖在新一代的技術當中取代SPICE Gummel Poon的地位而成為新的標準。在本論文中比較這些先進的精簡模型,討論其針對SPICE Gummel Poon模型無法詳細描述的效應,加以改善,以期能夠精準的描述先進製程的元件。
最後將比較異質接面電晶體在射極寬度以及長度改變時,對於高頻特性的性能做個比較,有利於將來在電路設計時挑選電晶體或是在設計電晶體元件時能有選擇的依據。
摘要(英) Abstract
The Silicon Germanium Hetero-junction Bipolar Transistor is fabricated by introducing Germanium into the base of conventional Silicon Bipolar Junction Transistor (Si BJT) to form the SiGe film. The performance of Silicon Germanium Hetero-junction Bipolar Transistors (SiGe HBT) is superior to silicon bipolar junction transistor in its high frequency performances. In this paper, the difference between the SiGe HBT and Si BJT will be discussed in detail, such as the comparison of their characteristics of current. In this thesis, we will focus on the VBIC model extraction of tsmc SiGe 0.18μm high power device with emitter area of 0.6x10.16μm2.
The SPICE Gummel Poon model has been the main stream of the conventional BJT model and as the workhorse in the circuit design for more than twenty years. However, in the advanced technology, the SPICE Gummel Poon model can’t include all the effect of the advanced devices with small feature size. Consequently, the new models were presented, including VBIC, Mextram and HICUM models, to replace with the SPICE Gummel Poon model in the new technology. In this thesis, the comparisons of these compact models will be described, and the improved advantages of these compact models over the SPICE Gummel Poon model will be described. A step-by-step parameter extraction for VBIC model will be performed in 0.18μm SiGe HBT. A completed VBIC model has successfully established and these compact models can precisely describe the behavior of the 0.18μm SiGe advanced devices.
The last part in this thesis, we will discuss the high frequency performance of a series of SiGe HBT devices which have various geometry. The comparisons of high frequency performance are helpful to choose the device for the circuit design in the future.
關鍵字(中) ★ VBIC模型
★ 雙載子電晶體
★ 矽鍺異質接面電晶體
關鍵字(英) ★ BJT
★ SiGe HBT
★ VBIC model
論文目次 目錄
第一章 導論...................................................1
第二章 矽鍺異質接面電晶體...................................3
2.1 雙載子電晶體的演進......................................3
2.2 矽鍺異質接面電晶體技術..................................5
2.3 矽鍺異質接面電晶體......................................6
2.3.1 矽鍺侷限形變層 (Strained-Layer Epitaxy) ...............9
2.3.2 能帶工程(Bandgap Engineering).......................10
2.3.3 漸進式的鍺參雜 (Graded Germanium Profiles) ...........12
2.4 積體電路技術的選擇.....................................14
第三章 精簡元件模型的比較..................................15
3.1 Spice Gummel-Poon模型..................................15
3.1.1 SGP模型等效電路...................................16
3.1.2 SGP模型的缺陷......................................18
3.2 VBIC模型..............................................19
3.3 Mextram Model:Philips雙極性電晶體模型.................22
3.4 高電流模型HICUM (High Current Model) ...................24
3.5 精簡模型的比較.........................................26
3.6 結論...................................................28
第四章 VBIC模型萃取........................................29
4.1 VBIC模型等效電路......................................29
4.2 參數萃取與最佳化.......................................32
4.2.1 儀器設定...........................................34
4.2.2 寄生電阻之量測及萃取...............................34
4.2.3 VBIC模型電流方程式及順向與逆向Gummel Plot參數之萃取..37
4.2.4 類飽和效應(Quasi-Saturation)萃取...................42
4.2.5 熱網路(Thermal Network)的萃取-自我加熱效應.........43
4.2.6 接面電容分析….....................................43
4.2.7 傳輸時間(transit time)分析.........................44
4.3 模擬結果...............................................45
4.4 結論...................................................50
第五章 電晶體高頻特性......................................52
5.1 高頻響應...............................................52
5.2 傳輸時間...............................................53
5.3 截止頻率fT.............................................55
5.4 最大共振頻率fmax........................................56
5.5 實驗結果...............................................57
5.6 結論...................................................62
第六章 結論與未來展望.......................................63
參考文獻 參考文獻
[1] J. Bardeen and W.H. Brattain, “The transistor, a semiconductor triode”,Phys. Rev., 74, 230 (1948).
[2] W. Shockley, “The theory of p-n junctions in semiconductors and p-n junction transistors”, Bell Syst. Tech. Jnl, 28, 435 (1949).
[3] A Joseph et al., "A 0.18-µm BiCMOS Technology Featuring 120/100 GHz (ft/fmax) HBT and ASIC Compatible CMOS Using Copper Interconnect" (paper to be presented at the Bipolar/BiCMOS Circuits and Technology Meeting, Minneapolis, October 2–4, 2001).
[4] J.-S.Rieh et al., “SiGe HBTs with cut-off frequency of 350 GHz”, IEDM Technical Digest, 771 2002).
[5] H.K. Gummel and H.C. Poon, ‘An integral charge controlmodel of bipolar
transistors’, Bell Syst. Tech. Jnl, 49, 827 (1970).
[6] C.C. McAndrew, J.A. Seitchik, D.F. Bowers, M. Dunn, M. Foisy,
E. Getreu, M. McSwain, S. Moinian, J. Parker, D.J. Roulston,
M. Schroter, P. van Wijnen and L.F. Wagner, ‘VBIC95: the vertical bipolar
inter company model’, IEEE Jnl Solid State Circuits, 31, 1476 (1995).
[7] www.designers-guide.com/VBIC/
[8] H.C. deGraaff and W.J. Kloosterman, ‘Modelling of the collector epilayer
of a bipolar transistor in the MEXTRAM model’, IEEE Trans. Electron.
Devices, 42, 274 (1995).
[9] "http://www-us.semiconductors.com/Philips_Models/".
[10] H-M.Rein et al.: I.E.E.E. Trans. Electr. Dev. ED-34, parts I and II, 1741 (1987)
[11] A.Koldehoff et al.: Solid-St. Electr. 36, 1035 (1993).
[12] D.J. Roulston, ‘Bipolar semiconductor devices’, 239, McGraw Hill (1990).
[13] J.J.H. van den Biessen, ‘A simple regional analysis of transit times in bipolar transistors’, Solid State Electronics, 29, 529 (1986).
[14] L.C.N. deVreede, ‘HF silicon IC’s for wide-band communication systems’,
PhD thesis, Technical University of Delft (1996).
[15] Larson, L.E.; “Integrated circuit technology options for RFICs-present status and future directions,”Solid-State Circuits, IEEE Journal of , Volume: 33 , Issue: 3 , March 1998, Pages:387 – 399.
[16] Cressler, J.D.; “SiGe HBT technology: a new contender for Si-based RF and microwave circuit applications,” Microwave Theory and Techniques, IEEE Transactions on , Volume: 46 , Issue: 5 , May 1998, Pages:572 – 589.
[17] Agilent Technologies website, http://eesof.tm.agilent.com/docs/iccap2002/iccap_mdl_handbook.html
[18] Ramana Murty, M.; Newton, K.M.; Sweeney, S.L.; Sheridan, D.C.; Harame, D.L.; “Implementation of a scalable and statistical VBIC model for large-signal and intermodulation distortion analysis of SiGe HBTs,” Microwave Symposium Digest, 2002 IEEE MTT-S International , Volume: 3 , 2-7 June 2002 ,Pages:2165 – 2168.
[19] Huang, G.W.; Chen, K.M.; Kuan, J.F.; Deng, Y.M.; Wen, S.Y.; Chiu, D.Y.; Wang, M.T.; “Silicon BJT modeling using VBIC model,” Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , Volume: 1 , 3-6 Dec. 2001 Pages:240 - 243 vol.1
[20] Cao, X.; McMacken, J.; Stiles, K.; Layman, P.; Liou, J.J.; Sun, A.; Moinian, S.; “Parameter extraction and optimization for new industry standard VBIC model,” Advanced Semiconductor Devices and Microsystems, 1998. ASDAM '98. Second International Conference on , 5-7 Oct. 1998
Pages:107 – 116.
[21] Xiaochong Cao; Mcmacken, J.; Stiles, K.; Layman, P.; Liou, J.J.; Oritz-Conde, A.; Moinian, S.; “Comparison of the new VBIC and conventional Gummel-Poon bipolar transistor models,” Electron Devices, IEEE Transactions on , Volume: 47 , Issue: 2 , Feb. 2000 ,Pages:427 – 433.
[22] Tutt, M.; “GaAs based HBT large signal modeling using VBIC for linear power amplifier applications,” Bipolar/BiCMOS Circuits and Technology Meeting, 2000. Proceedings of the 2000 , 24-26 Sept. 2000, Pages:58 – 61.
[23] Senapati, B.; Maiti, C.K.; “Advanced SPICE modelling of SiGe HBTs using VBIC model,” Circuits, Devices and Systems, IEE Proceedings [see also IEE Proceedings G- Circuits, Devices and Systems] , Volume: 149 , Issue: 2 , April 2002, Pages:129 – 135.
[24] Megherbi, S.; Yahiaoui, C.; Pane, J.-F.; “A Behaviour Non-linear SiGe-HBT Model Based On Gummel-poon Topology,” Circuits and Systems, 1997. Proceedings of the 40th Midwest Symposium on , Volume: 2 , 3-6 Aug. 1997, Pages:1314 – 1317.
[25] Walter, K.M.; Ebersman, B.; Sunderland, D.A.; Berg, G.D.; Freeman, G.G.; Groves, R.A.; Jadus, D.K.; Harame, D.L.; “A scaleable, statistical SPICE Gummel-Poon model for SiGe HBTs,” Solid-State Circuits, IEEE Journal of , Volume: 33 , Issue: 9 , Sept. 1998, Pages:1439 – 1444.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2004-10-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明